Brigitte Maria Städler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5905996/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Micromotorâ€Assisted Keratinocytes Migration in a Floating Paper Chip. Small, 2023, 19, .	5.2	4
2	Polymer Micelles vs Polymer–Lipid Hybrid Vesicles: A Comparison Using RAW 264.7 Cells. Biomacromolecules, 2022, 23, 1052-1064.	2.6	3
3	Nitric oxide producing artificial enzymes based on metalloporphyrins. Materials Today Chemistry, 2022, 23, 100743.	1.7	4
4	Microreactor equipped with naturally acid-resistant histidine ammonia lyase from an extremophile. Materials Advances, 2022, 3, 3649-3662.	2.6	1
5	Manganese dioxide nanosheet-containing reactors as antioxidant support for neuroblastoma cells. Journal of Materials Chemistry B, 2022, 10, 4672-4683.	2.9	6
6	Membrane composition of polymer-lipid hybrid vesicles. Applied Materials Today, 2022, 29, 101549.	2.3	6
7	Cell mimicry as a bottomâ€up strategy for hierarchical engineering of <scp>natureâ€inspired</scp> entities. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2021, 13, e1683.	3.3	18
8	Mitochondria Encapsulation in Hydrogelâ€Based Artificial Cells as ATP Producing Subunits. Small, 2021, 17, e2007959.	5.2	21
9	Enzyme Mimic Facilitated Artificial Cell to Mammalian Cell Signal Transfer. Angewandte Chemie, 2021, 133, 18852-18859.	1.6	Ο
10	Enzyme Mimic Facilitated Artificial Cell to Mammalian Cell Signal Transfer. Angewandte Chemie - International Edition, 2021, 60, 18704-18711.	7.2	15
11	Evaluation of Hybrid Vesicles in an Intestinal Cell Model Based on Structured Paper Chips. Biomacromolecules, 2021, 22, 3860-3872.	2.6	12
12	Surface polymerization induced locomotion. Nanoscale, 2021, 13, 10035-10043.	2.8	5
13	Locomotion of micromotors in paper chips. Nanoscale, 2021, 13, 17900-17911.	2.8	10
14	Microreactors: Multicompartment Microreactors Prevent Excitotoxic Dysfunctions In Rat Primary Cortical Neurons (Adv. Biosys. 10/2020). Advanced Biology, 2020, 4, 2070102.	3.0	0
15	Cell Membrane Coated Particles. Advanced Biology, 2020, 4, e2000174.	3.0	18
16	Polydiacetyleneâ€Based Biosensors for the Detection of Viruses and Related Biomolecules. Advanced Functional Materials, 2020, 30, 2004605.	7.8	22
17	Multicompartment Microreactors Prevent Excitotoxic Dysfunctions In Rat Primary Cortical Neurons. Advanced Biology, 2020, 4, e2000139.	3.0	6
18	Polymer–Lipid Hybrid Vesicles and Their Interaction with HepG2 Cells. Small, 2020, 16, e1906493.	5.2	15

Brigitte Maria StÃøler

#	Article	IF	CITATIONS
19	Distinguishing Commercial Beers Using a Solution-Based Sensor Array Derived from Nanoscale Polydiacetylene Vesicles. ACS Applied Nano Materials, 2020, 3, 3439-3448.	2.4	16
20	Recent Advancements in Using Polymers for Intestinal Mucoadhesion and Mucopenetration. Macromolecular Bioscience, 2020, 20, e1900342.	2.1	28
21	Locomotion of Micromotors Due to Liposome Disintegration. Langmuir, 2020, 36, 7056-7065.	1.6	8
22	Recent Advances in Nano―and Micromotors. Advanced Functional Materials, 2020, 30, 1908283.	7.8	149
23	Mucopenetrating Zwitterionic Micelles. ChemNanoMat, 2020, 6, 744-750.	1.5	13
24	Mucopenetrating polymer – Lipid hybrid nanovesicles as subunits in alginate beads as an oral formulation. Journal of Controlled Release, 2020, 322, 470-485.	4.8	20
25	Poly(ethylene glycol) Grafting of Nanoparticles Prevents Uptake by Cells and Transport Through Cell Barrier Layers Regardless of Shear Flow and Particle Size. ACS Biomaterials Science and Engineering, 2019, 5, 4355-4365.	2.6	6
26	Microswimmers with Heat Delivery Capacity for 3D Cell Spheroid Penetration. ACS Nano, 2019, 13, 12192-12205.	7.3	59
27	Disintegrating polymer multilayers to jump-start colloidal micromotors. Nanoscale, 2019, 11, 733-741.	2.8	12
28	Recent Developments in Polydiacetylene-Based Sensors. Chemistry of Materials, 2019, 31, 1196-1222.	3.2	177
29	Hybrid vesicles as intracellular reactive oxygen species and nitric oxide generators. Nanoscale, 2019, 11, 11530-11541.	2.8	18
30	Small Organic Catalase Mimic Encapsulated in Micellar Artificial Organelles as Reactive Oxygen Species Scavengers. ACS Applied Polymer Materials, 2019, 1, 1532-1539.	2.0	20
31	Interaction of pH-responsive polyanions with phospholipid membranes. Polymer Chemistry, 2019, 10, 5992-5997.	1.9	7
32	On the Assembly of Microreactors with Parallel Enzymatic Pathways. Advanced Biology, 2018, 2, e1700244.	3.0	14
33	Interaction of cells with patterned reactors. Biomaterials Science, 2018, 6, 793-802.	2.6	6
34	Platinum Nanoparticle-Based Microreactors as Support for Neuroblastoma Cells. ACS Applied Materials & Interfaces, 2018, 10, 7581-7592.	4.0	20
35	Multicompartmentalized Microreactors Containing Nuclei and Catalase-Loaded Liposomes. Biomacromolecules, 2018, 19, 4379-4385.	2.6	15
36	Phospholipid–Block Copolymer Hybrid Vesicles with Lysosomal Escape Ability. Langmuir, 2018, 34, 6874-6886.	1.6	20

Brigitte Maria StÃ**b**ler

#	Article	IF	CITATIONS
37	Matrix Vesicles-Containing Microreactors as Support for Bonelike Osteoblasts to Enhance Biomineralization. ACS Applied Materials & Interfaces, 2018, 10, 30180-30190.	4.0	28
38	Small Subcompartmentalized Microreactors as Support for Hepatocytes. Advanced Healthcare Materials, 2017, 6, .	3.9	14
39	Liposomes and lipid bilayers in biosensors. Advances in Colloid and Interface Science, 2017, 249, 88-99.	7.0	140
40	Double-Fueled Janus Swimmers with Magnetotactic Behavior. ACS Nano, 2017, 11, 3973-3983.	7.3	112
41	Planar and Cell Aggregate-Like Assemblies Consisting of Microreactors and HepG2 Cells. ACS Omega, 2017, 2, 7085-7095.	1.6	18
42	Enzyme prodrug therapies and therapeutic enzymes. Advanced Drug Delivery Reviews, 2017, 118, 1.	6.6	19
43	Enzymes as key features in therapeutic cell mimicry. Advanced Drug Delivery Reviews, 2017, 118, 94-108.	6.6	36
44	A Polymer Chemistry Point of View on Mucoadhesion and Mucopenetration. Macromolecular Bioscience, 2017, 17, 1700060.	2.1	65
45	Mucopenetrating micelles with a PEG corona. Nanoscale, 2017, 9, 18438-18448.	2.8	23
46	Tannic acid and cholesterol–dopamine as building blocks in composite coatings for substrateâ€mediated drug delivery. Polymer International, 2016, 65, 1306-1314.	1.6	8
47	Droplet-microfluidics towards the assembly of advanced building blocks in cell mimicry. Nanoscale, 2016, 8, 19510-19522.	2.8	15
48	Patterned Liposome–Polymer Composite Coatings. ChemNanoMat, 2016, 2, 822-829.	1.5	1
49	Subcompartmentalized Nanoreactors as Artificial Organelle with Intracellular Activity. Small, 2016, 12, 1806-1814.	5.2	44
50	Phospholipid—polymer amphiphile hybrid assemblies and their interaction with macrophages. Biomicrofluidics, 2015, 9, 052610.	1.2	18
51	Extracellular Microreactor for the Depletion of Phenylalanine Toward Phenylketonuria Treatment. Advanced Functional Materials, 2015, 25, 3860-3869.	7.8	32
52	Janus subcompartmentalized microreactors. Soft Matter, 2015, 11, 5327-5335.	1.2	29
53	Mixed poly(dopamine)/poly(<scp>l</scp> -lysine) (composite) coatings: from assembly to interaction with endothelial cells. Biomaterials Science, 2015, 3, 1188-1196.	2.6	17
54	Enhanced Diffusion of Glucose-Fueled Janus Particles. Chemistry of Materials, 2015, 27, 7412-7418.	3.2	120

Brigitte Maria StÃøler

#	Article	IF	CITATIONS
55	Recent developments in poly(dopamine)-based coatings for biomedical applications. Nanomedicine, 2015, 10, 2725-2742.	1.7	101
56	Biocatalytic Polymer Coatings: Onâ€Đemand Drug Synthesis and Localized Therapeutic Effect under Dynamic Cell Culture Conditions. Small, 2014, 10, 1314-1324.	5.2	18
57	Liposome-containing polymer films and colloidal assemblies towards biomedical applications. Nanoscale, 2014, 6, 6426.	2.8	31
58	Liposomes equipped with poly(N-isopropyl acryl amide)-containing coatings as potential drug carriers. RSC Advances, 2014, 4, 44769-44776.	1.7	14
59	Recent progress of liposomes in nanomedicine. Journal of Materials Chemistry B, 2014, 2, 6686-6691.	2.9	28
60	Confined Multiple Enzymatic (Cascade) Reactions within Poly(dopamine)-based Capsosomes. ACS Applied Materials & Interfaces, 2014, 6, 12771-12779.	4.0	73
61	Poly(<i>N</i> -isopropylacrylamide)/Poly(dopamine) Capsules. Langmuir, 2014, 30, 5592-5598.	1.6	16
62	Liposomal Drug Deposits in Poly(Dopamine) Coatings: Effect of Their Composition, Cell Type, Uptake Pathway Considerations, and Shear Stress. Macromolecular Bioscience, 2014, 14, 1677-1687.	2.1	4
63	Cell response to PEGylated poly(dopamine) coated liposomes considering shear stress. Biochimica Et Biophysica Acta - General Subjects, 2013, 1830, 4838-4847.	1.1	38
64	Advanced Subcompartmentalized Microreactors: Polymer Hydrogel Carriers Encapsulating Polymer Capsules and Liposomes. Small, 2013, 9, 3573-3583.	5.2	50
65	Lipogels: surface-adherent composite hydrogels assembled from poly(vinyl alcohol) and liposomes. Nanoscale, 2013, 5, 6758.	2.8	31
66	Liposomes as Drug Deposits in Multilayered Polymer Films. ACS Applied Materials & Interfaces, 2013, 5, 2967-2975.	4.0	43
67	Assembly of Poly(dopamine)/Poly(<i>N</i> -isopropylacrylamide) Mixed Films and Their Temperature-Dependent Interaction with Proteins, Liposomes, and Cells. Langmuir, 2013, 29, 10213-10222.	1.6	39
68	Highly-Branched Poly(<i>N</i> -isopropylacrylamide) as a Component in Poly(dopamine) Films. Journal of Physical Chemistry B, 2013, 117, 10504-10512.	1.2	37
69	Cargo delivery to adhering myoblast cells from liposome-containing poly(dopamine) composite coatings. Biomaterials Science, 2013, 1, 1181.	2.6	24
70	Cholesterol – a biological compound as a building block in bionanotechnology. Nanoscale, 2013, 5, 89-109.	2.8	101
71	Liposomal Templating, Association with Mammalian Cells, and Cytotoxicity of Poly(vinyl alcohol) Physical Hydrogel Nanoparticles. Particle and Particle Systems Characterization, 2013, 30, 514-522.	1.2	6
72	Shear Stress and Its Effect on the Interaction of Myoblast Cells with Nanosized Drug Delivery Vehicles. Molecular Pharmaceutics, 2013, 10, 2707-2712.	2.3	39

#	Article	IF	CITATIONS
73	Hydrogels: Liposomal Templating, Association with Mammalian Cells, and Cytotoxicity of Poly(vinyl) Tj ETQq1 1 Systems Characterization, 2013, 30, 566-566.	0.784314 1.2	rgBT /Overl⊂ 0
74	Subcompartmentalized Systems Towards Therapeutic Cell Mimics. Regenerative Medicine, Artificial Cells and Nanomedicine, 2013, , 281-299.	0.7	2
75	Motion analysis of optically trapped particles and cells using 2D Fourier analysis. Optics Express, 2012, 20, 1953.	1.7	1
76	Effect of Osteopontin on the Initial Adhesion of Dental Bacteria. Journal of Natural Products, 2012, 75, 2108-2112.	1.5	15
77	Surface adhered poly(vinyl alcohol) physical hydrogels as tools for rational design of intelligent biointerfaces. Soft Matter, 2012, 8, 4625.	1.2	25
78	Surfaceâ€Adhered Composite Poly(Vinyl Alcohol) Physical Hydrogels: Polymersomeâ€Aided Delivery of Therapeutic Small Molecules. Advanced Healthcare Materials, 2012, 1, 791-795.	3.9	36
79	Assembly of Poly(dopamine) Films Mixed with a Nonionic Polymer. Langmuir, 2012, 28, 17585-17592.	1.6	117
80	Myoblast Cell Interaction with Polydopamine Coated Liposomes. Biointerphases, 2012, 7, 8.	0.6	43
81	Triggered Cargo Release by Encapsulated Enzymatic Catalysis in Capsosomes. Nano Letters, 2011, 11, 4958-4963.	4.5	82
82	Polydopamine/Liposome Coatings and Their Interaction with Myoblast Cells. ACS Applied Materials & amp; Interfaces, 2011, 3, 2142-2147.	4.0	83
83	Poly(vinyl alcohol) Physical Hydrogels: Noncryogenic Stabilization Allows Nano- and Microscale Materials Design. Langmuir, 2011, 27, 10216-10223.	1.6	43
84	Polydopamine—a nature-inspired polymer coating for biomedical science. Nanoscale, 2011, 3, 4916.	2.8	769
85	Degradation of liposomal subcompartments in PEGylated capsosomes. Soft Matter, 2011, 7, 9638.	1.2	26
86	A Critical Look at Multilayered Polymer Capsules in Biomedicine: Drug Carriers, Artificial Organelles, and Cell Mimics. Advanced Functional Materials, 2011, 21, 14-28.	7.8	116
87	Capsosomes with "Freeâ€Floating―Liposomal Subcompartments. Advanced Materials, 2011, 23, 4082-408	7. 11.1	84
88	Capsosomes with Multilayered Subcompartments: Assembly and Loading with Hydrophobic Cargo. Advanced Functional Materials, 2010, 20, 59-66.	7.8	111
89	Photobleaching induced damage of biomolecules: Streptavidin as â€ ⁻ bio'-photoresist. Surface Science, 2010, 604, 898-905	0.8	1
90	Subcompartmentalized Polymer Hydrogel Capsules with Selectively Degradable Carriers and Subunits. Small, 2010, 6, 1558-1564.	5.2	51

Brigitte Maria StÃøler

#	Article	IF	CITATIONS
91	Liposome and Lipid Bilayer Arrays Towards Biosensing Applications. Small, 2010, 6, 2481-2497.	5.2	191
92	Poly(Methacrylic Acid) Polymer Hydrogel Capsules: Drug Carriers, Subâ€compartmentalized Microreactors, Artificial Organelles. Small, 2010, 6, 2201-2207.	5.2	53
93	Monitoring ion-channel function in real time through quantum decoherence. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 18777-18782.	3.3	112
94	Engineering Advanced Capsosomes: Maximizing the Number of Subcompartments, Cargo Retention, and Temperature-Triggered Reaction. ACS Nano, 2010, 4, 1351-1361.	7.3	139
95	Noncovalent Liposome Linkage and Miniaturization of Capsosomes for Drug Delivery. Biomacromolecules, 2010, 11, 3548-3555.	2.6	63
96	A Microreactor with Thousands of Subcompartments: Enzyme‣oaded Liposomes within Polymer Capsules. Angewandte Chemie - International Edition, 2009, 48, 4359-4362.	7.2	204
97	Stabilization of Polymerâ€Hydrogel Capsules via Thiol–Disulfide Exchange. Small, 2009, 5, 2601-2610.	5.2	90
98	Cholesterol-mediated anchoring of enzyme-loaded liposomes within disulfide-stabilized polymer carrier capsules. Biomaterials, 2009, 30, 5988-5998.	5.7	103
99	Capsosomes: Subcompartmentalizing Polyelectrolyte Capsules Using Liposomes. Langmuir, 2009, 25, 6725-6732.	1.6	127
100	Polymer hydrogel capsules: en route toward synthetic cellular systems. Nanoscale, 2009, 1, 68.	2.8	171
101	Low-Fouling, Biofunctionalized, and Biodegradable Click Capsules. Biomacromolecules, 2008, 9, 3389-3396.	2.6	118
102	Nanopatterning of gold colloids for label-free biosensing. Nanotechnology, 2007, 18, 155306.	1.3	41
103	Poly(l-lysine)-grafted-poly(ethylene glycol)-based surface-chemical gradients. Preparation, characterization, and first applications. Biointerphases, 2006, 1, 156-165.	0.6	42
104	Creation of a functional heterogeneous vesicle array via DNA controlled surface sorting onto a spotted microarray. Biointerphases, 2006, 1, 142-145.	0.6	24
105	Nanopatterns with Biological Functions. Journal of Nanoscience and Nanotechnology, 2006, 6, 2237-2264.	0.9	100
106	A novel crossed microfluidic device for the precise positioning of proteins and vesicles. Lab on A Chip, 2005, 5, 1387.	3.1	35
107	Micropatterning of DNA-Tagged Vesicles. Langmuir, 2004, 20, 11348-11354.	1.6	89