Weiting Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5905992/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Facile fabrication of melamine sponge@covalent organic framework composite for enhanced degradation of tetracycline under visible light. Chemical Engineering Journal, 2022, 430, 132817.	12.7	46
2	Polyoxometalate@ZIF-67 derived carbon-based catalyst for efficient electrochemical overall seawater splitting and oxygen reduction. International Journal of Hydrogen Energy, 2022, 47, 2178-2186.	7.1	19
3	A ratiometric fluorescence-scattering sensor for rapid, sensitive and selective detection of doxycycline in animal foodstuffs. Food Chemistry, 2022, 373, 131669.	8.2	21
4	Decorating Covalent Organic Frameworks with High-density Chelate Groups for Uranium Extraction. Chemical Research in Chinese Universities, 2022, 38, 433-439.	2.6	12
5	Facile preparation of covalent organic frameworks@alginate composite beads for enhanced uranium(VI) adsorption. Rare Metals, 2022, 41, 1323-1331.	7.1	15
6	Fluorescent zinc coordination polymer for highly selective and sensitive detection of 2,4,6-trinitrophenol in aqueous media. Journal of Solid State Chemistry, 2022, 309, 122987.	2.9	4
7	Turn-on Fluorescence Detection of Acetic Acid in Wine Using a Uranyl–Organic Framework. Crystal Growth and Design, 2022, 22, 1984-1990.	3.0	10
8	Modulation of the Host–Guest–Guest Interactions in a Metal–Organic Framework for Multiple Anticounterfeiting Applications. Inorganic Chemistry, 2022, 61, 456-463.	4.0	14
9	ZIFs@chitosan Derived Efficient Bimetallic Carbon-Based Catalyst for Oxygen Reduction. Industrial & Engineering Chemistry Research, 2022, 61, 6156-6162.	3.7	9
10	Metal-Organic framework-based Wood Aerogel for Effective Removal of Micro/Nano plastics. Chemical Research in Chinese Universities, 2022, 38, 186-191.	2.6	27
11	Confined growth of MOF in chitosan matrix for removal of trace Pb(â¡) from reclaimed water. Separation and Purification Technology, 2022, 294, 121223.	7.9	26
12	Magnetic porphyrin-based metal organic gel for rapid RhB removal and enhanced antibacterial activity by heterogeneous Photo-Fenton reaction under visible light. Chemosphere, 2022, 303, 135114.	8.2	13
13	Dye-Encapsulated Lanthanide-Based Metal–Organic Frameworks as a Dual-Emission Sensitization Platform for Alachlor Sensing. Inorganic Chemistry, 2022, 61, 9801-9807.	4.0	9
14	Ultra‧mall Noble Metal Ceriaâ€Based Catalytic Materials: From Synthesis to Application. European Journal of Inorganic Chemistry, 2021, 2021, 689-701.	2.0	6
15	Recent Advances in Graphitic Carbon Nitride Supported Singleâ€Atom Catalysts for Energy Conversion. ChemCatChem, 2021, 13, 1250-1270.	3.7	46
16	A stable mixed-valent uranium(<scp>v</scp> , <scp>vi</scp>) organic framework as a fluorescence thermometer. Inorganic Chemistry Frontiers, 2021, 8, 3514-3521.	6.0	20
17	Dual-emitting piezofluorochromic dye@MOF for white-light generation. Chemical Communications, 2021, 57, 1340-1343.	4.1	24
18	Facile syntheses of tetrahedral imidazolate framework for CO2 separation. Journal of Solid State Chemistry, 2021, 297, 122100.	2.9	4

#	Article	IF	CITATIONS
19	Enhanced uranium extraction from aqueous solution using hollow ZIF-8. Journal of Radioanalytical and Nuclear Chemistry, 2021, 329, 1011-1017.	1.5	7
20	Modulation of High-Spin Co(II) in Li/Co-MOFs as Efficient Fenton-like Catalysts. Inorganic Chemistry, 2021, 60, 12405-12412.	4.0	9
21	A highly selective ratiometric fluorescent probe for doxycycline based on the sensitization effect of bovine serum albumin. Journal of Hazardous Materials, 2021, 416, 125759.	12.4	52
22	Covalent modification of ZIF-90 for uranium adsorption from seawater. Microporous and Mesoporous Materials, 2021, 323, 111231.	4.4	30
23	A Zinc Coordination Polymer Sensor for Selective and Sensitive Detection of Doxycycline Based on Fluorescence Enhancement. Crystal Growth and Design, 2021, 21, 4971-4978.	3.0	33
24	Salt-tolerant and low-cost flame-treated aerogel for continuously efficient solar steam generation. Solar Energy, 2021, 227, 303-311.	6.1	29
25	A highly stable, rapid and sensitive fluorescent probe for ciprofloxacin based on Al3+-enhanced fluorescence of gold nanoclusters. Sensors and Actuators B: Chemical, 2021, 346, 130502.	7.8	46
26	Metal-organic Framework Humidity Sensing Based on Optical Fiber Fabry-Perot Interference. , 2021, , .		2
27	Cobalt nanoparticle–carbon nanoplate as the solar absorber of a wood aerogel evaporator for continuously efficient desalination. Environmental Science: Water Research and Technology, 2021, 8, 151-161.	2.4	14
28	A recyclable fluorescent probe for picric acid detection in water samples based on inner filter effect. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 226, 117575.	3.9	23
29	AIE Infinite Coordination Polymer for Phosphate Ion Detection via Aggregation State Modulation. ChemistrySelect, 2020, 5, 11483-11488.	1.5	4
30	ZIF-L-Co@carbon fiber paper composite derived Co/Co3O4@C electrocatalyst for ORR in alkali/acidic media and overall seawater splitting. International Journal of Hydrogen Energy, 2020, 45, 33028-33036.	7.1	40
31	A Simple Colorimetric Probe for Sensitive Detection of Hg ²⁺ Based on MnO ₂ Nanosheets and Monothioglycerol. ChemistrySelect, 2020, 5, 13888-13894.	1.5	8
32	Reusable ZIF-8@chitosan sponge for the efficient and selective removal of congo red. New Journal of Chemistry, 2020, 44, 15459-15466.	2.8	24
33	Water-stable lanthanide-based metal–organic gel for the detection of organic amines and white-light emission. Journal of Materials Chemistry C, 2020, 8, 13648-13654.	5.5	48
34	Integration of fluorescent probes into metal–organic frameworks for improved performances. RSC Advances, 2020, 10, 33879-33893.	3.6	22
35	Luminescent Detection of Cr(VI) and Mn(VII) Based on a Stable Supramolecular Organic Framework. Crystal Growth and Design, 2020, 20, 6888-6895.	3.0	15
36	Integration of Cd:ZnS QDs into ZIF-8 for enhanced selectivity toward Cu ²⁺ detection. Inorganic Chemistry Frontiers, 2020, 7, 3718-3726.	6.0	32

#	Article	IF	CITATIONS
37	In situ modification of ZIF-67 with multi-sulfonated dyes for great enhanced methylene blue adsorption via synergistic effect. Microporous and Mesoporous Materials, 2020, 303, 110304.	4.4	43
38	Adsorptive separation of C2H6/C2H4 on metal-organic frameworks (MOFs) with pillared-layer structures. Separation and Purification Technology, 2020, 242, 116819.	7.9	40
39	A Zinc Metal–Organic Framework for Concurrent Adsorption and Detection of Uranium. Inorganic Chemistry, 2020, 59, 9857-9865.	4.0	62
40	Facile controlled synthesis of core–shell/yolk–shell/hollow ZIF-67@Co-LDH/SiO ₂ <i>via</i> a self-template method. Inorganic Chemistry Frontiers, 2020, 7, 1643-1650.	6.0	34
41	In Situ Ligand Formation-Driven Synthesis of a Uranyl Organic Framework as a Turn-on Fluorescent pH Sensor. Inorganic Chemistry, 2020, 59, 1778-1784.	4.0	36
42	Cellulose Membrane Composited with ZIFâ€8 for Selective Separation of Rhodamine B. ChemistrySelect, 2020, 5, 4078-4084.	1.5	19
43	A metal–organic gelâ€based fluorescent chemosensor for selective Al ³⁺ detection. Applied Organometallic Chemistry, 2019, 33, e5179.	3.5	18
44	In situ Preparation of Chitosan/ZIF-8 Composite Beads for Highly Efficient Removal of U(VI). Frontiers in Chemistry, 2019, 7, 607.	3.6	56
45	A simple fluorescent probe for fast and sensitive detection of inorganic phosphate based on uranine@ZIF-8 composite. Sensors and Actuators B: Chemical, 2019, 301, 127110.	7.8	33
46	Selective Detection of Aromatic Nitrophenols by a Metal–Organic Framework-Based Fluorescent Sensor. Crystal Growth and Design, 2019, 19, 6308-6314.	3.0	65
47	A lithiumâ€organic framework as a fluorescent sensor for detecting aluminum (III) ion. Applied Organometallic Chemistry, 2019, 33, e5044.	3.5	21
48	Efficient Removal of U(VI) Using Functionalized Hollow Mesoporous Silica Nanospheres. ChemistrySelect, 2019, 4, 7396-7402.	1.5	7
49	Metal–organic framework-based materials for the recovery of uranium from aqueous solutions. Inorganic Chemistry Frontiers, 2019, 6, 1924-1937.	6.0	108
50	Syntheses and Applications of Noble-Metal-free CeO2-Based Mixed-Oxide Nanocatalysts. CheM, 2019, 5, 1743-1774.	11.7	125
51	Two metal–organic zeolites for highly sensitive and selective sensing of Tb ³⁺ . Inorganic Chemistry Frontiers, 2019, 6, 1129-1134.	6.0	46
52	Hollow cobalt sulfide for highly efficient uranium adsorption from aqueous solutions. Inorganic Chemistry Frontiers, 2019, 6, 3230-3236.	6.0	24
53	ZnO@ZIF-8 core-shell microspheres for improved ethanol gas sensing. Sensors and Actuators B: Chemical, 2019, 284, 421-427.	7.8	113
54	Two bimetallic metal–organic frameworks capable of direct photocatalytic degradation of dyes under visible light. Transition Metal Chemistry, 2019, 44, 275-281.	1.4	14

#	Article	IF	CITATIONS
55	Two efficient pH sensors based on heteronuclear metal-organic frameworks. Journal of Luminescence, 2019, 205, 380-384.	3.1	23
56	A hexanuclear cluster based metal-organic framework for Fe3+ sensing. Inorganic Chemistry Communication, 2018, 91, 108-111.	3.9	19
57	Construction of Uranyl Organic Hybrids by Phosphonate and in Situ Generated Carboxyphosphonate Ligands. Inorganic Chemistry, 2017, 56, 1669-1678.	4.0	34
58	Fe ₃ O ₄ @ZIF-8: a magnetic nanocomposite for highly efficient UO ₂ ²⁺ adsorption and selective UO ₂ ²⁺ /Ln ³⁺ separation. Chemical Communications, 2017, 53, 4199-4202.	4.1	168
59	Interpenetrated Uranyl–Organic Frameworks with <i>bor</i> and <i>pts</i> Topology: Structure, Spectroscopy, and Computation. Inorganic Chemistry, 2017, 56, 14147-14156.	4.0	39
60	Layered and three-dimensional uranyl–organic assemblies with 4,4′-oxidiphthalic acid. Chinese Chemical Letters, 2016, 27, 325-329.	9.0	2
61	A multi-responsive luminescent sensor towards Fe 3+ and acetone based on a Cd-containing metal–organic framework. Chinese Chemical Letters, 2016, 27, 497-501.	9.0	20
62	Entangled Uranyl Organic Frameworks with (10,3)- <i>b</i> Topology and Polythreading Network: Structure, Luminescence, and Computational Investigation. Inorganic Chemistry, 2016, 55, 5540-5548.	4.0	39
63	Photochromic Terbium Phosphonates with Photomodulated Luminescence and Metal Ion Sensitive Detection. Chemistry - A European Journal, 2016, 22, 15451-15457.	3.3	63
64	A Multifunctional Mn ^{II} Phosphonate for Rapid Separation of Methyl Orange and Electronâ€Transfer Photochromism. Chemistry - A European Journal, 2016, 22, 11652-11659.	3.3	34
65	Assemblies of metal–organic frameworks based on a tetrapodal linker for luminescence sensing of tetrahydrofuran. CrystEngComm, 2016, 18, 2857-2863.	2.6	21
66	Structural Variations of the First Family of Heterometallic Uranyl Carboxyphosphinate Assemblies by Synergy between Carboxyphosphinate and Imidazole Ligands. Crystal Growth and Design, 2016, 16, 2011-2018.	3.0	19
67	Structural chemistry of uranium phosphonates. Coordination Chemistry Reviews, 2015, 303, 86-109.	18.8	121
68	Heterometallic zinc uranium oxyfluorides incorporating imidazole ligands. Chinese Chemical Letters, 2015, 26, 641-645.	9.0	3
69	A Nanoscale Multiresponsive Luminescent Sensor Based on a Terbium(III) Metal–Organic Framework. Chemistry - an Asian Journal, 2015, 10, 1703-1709.	3.3	31
70	Uranyl Carboxyphosphonates Derived from Hydrothermal in Situ Ligand Reaction: Syntheses, Structures, and Computational Investigations. Inorganic Chemistry, 2015, 54, 8617-8624.	4.0	24
71	The First Family of Actinide Carboxyphosphinates: Two―and Threeâ€Dimensional Uranyl Coordination Polymers. European Journal of Inorganic Chemistry, 2014, 2014, 5378-5384.	2.0	24
72	Syntheses, Structures, Luminescence, and Photocatalytic Properties of a Series of Uranyl Coordination Polymers. Crystal Growth and Design, 2014, 14, 5904-5911.	3.0	44

#	Article	IF	CITATIONS
73	Structural Variation within Heterometallic Uranyl Hybrids Based on Flexible Alkyldiphosphonate Ligands. Crystal Growth and Design, 2014, 14, 1366-1374.	3.0	39
74	A Nanosized {Ag@Ag ₁₂ } "Molecular Windmill―Templated by Polyoxometalates Anions. Inorganic Chemistry, 2014, 53, 11584-11588.	4.0	30
75	Dynamically controlled one-pot synthesis of heterogeneous core–shell MOF single crystals using guest molecules. Chemical Communications, 2014, 50, 11653-11656.	4.1	47
76	A nanosized heterometallic {Zn ₂ Ru ₃ } coordination cage templated by various polyoxometalates. Dalton Transactions, 2014, 43, 17244-17247.	3.3	8
77	Isolation of a series of uranium organophosphinates. CrystEngComm, 2014, 16, 8073-8080.	2.6	9
78	A new organically templated open-framework uranyl ethylenediphosphonate. Inorganic Chemistry Communication, 2014, 46, 110-112.	3.9	5
79	A highly efficient "metalloligand―strategy for the synthesis of ternary Ln–Ru–W hybrids. Chemical Communications, 2013, 49, 7911.	4.1	24
80	MOF-76: from a luminescent probe to highly efficient U ^{VI} sorption material. Chemical Communications, 2013, 49, 10415-10417.	4.1	257
81	Synthesis, Structures, and Properties of Uranyl Hybrids Constructed by a Variety of Mono- and Polycarboxylic Acids. Inorganic Chemistry, 2013, 52, 12394-12402.	4.0	64
82	Syntheses, structures and luminescent properties of two organic templated uranyl phosphonates. Inorganic Chemistry Communication, 2013, 34, 55-57.	3.9	16
83	Syntheses and Structures of a Series of Uranyl Phosphonates and Sulfonates: An Insight into Their Correlations and Discrepancies. Inorganic Chemistry, 2013, 52, 2736-2743.	4.0	72
84	Flexible Diphosphonic Acids for the Isolation of Uranyl Hybrids with Heterometallic U ^{VI} â•O—Zn ^{II} Cation–Cation Interactions. Inorganic Chemistry, 2013, 52, 8288-8290.	4.0	31
85	Construction of Cu(ii) coordination polymers based on semi-rigid tetrahedral pyridine ligands. RSC Advances, 2013, 3, 25065.	3.6	14
86	Construction of porous Mn(ii)-based metal–organic frameworks by flexible hexacarboxylic acid and rigid coligands. CrystEngComm, 2013, 15, 8320.	2.6	28
87	One-dimensional channel-structured Eu-MOF for sensing small organic molecules and Cu2+ ion. Journal of Materials Chemistry A, 2013, 1, 11043.	10.3	341
88	Bisactinyl halogenated complexes: relativistic density functional theory calculation and experimental synthesis. RSC Advances, 2013, 3, 1572-1582.	3.6	8
89	Mixedâ€Ligand Znâ€MOFs for Highly Luminescent Sensing of Nitro Compounds. Chemistry - an Asian Journal, 2013, 8, 982-989.	3.3	140
90	Syntheses and Structures of Uranyl Ethylenediphosphonates: From Layers to Elliptical Nanochannels. Inorganic Chemistry, 2013, 52, 7100-7106.	4.0	31

#	Article	IF	CITATIONS
91	Luminescent character of mesoporous silica with Er2O3 composite materials. Microporous and Mesoporous Materials, 2013, 170, 113-122.	4.4	18
92	Lanthanide Metal–Organic Frameworks Showing Luminescence in the Visible and Nearâ€Infrared Regions with Potential for Acetone Sensing. Chemistry - A European Journal, 2013, 19, 17172-17179.	3.3	127
93	3-Fold-Interpenetrated Uranium–Organic Frameworks: New Strategy for Rationally Constructing Three-Dimensional Uranyl Organic Materials. Inorganic Chemistry, 2012, 51, 3103-3107.	4.0	74
94	From 1D Chain to 3D Framework Uranyl Diphosphonates: Syntheses, Crystal Structures, and Selective Ion Exchange. Inorganic Chemistry, 2012, 51, 11458-11465.	4.0	78
95	Construction of Three-Dimensional Cobalt(II)-Based Metal–Organic Frameworks by Synergy between Rigid and Semirigid Ligands. Crystal Growth and Design, 2012, 12, 5529-5534.	3.0	33
96	Tailor-Made Zinc Uranyl Diphosphonates from Layered to Framework Structures. Crystal Growth and Design, 2012, 12, 4669-4675.	3.0	47
97	The First Uranyl Arsonates Featuring Heterometallic Cation–Cation Interactions with UVIâ•O–ZnIIBonding. Inorganic Chemistry, 2012, 51, 11150-11154.	4.0	39
98	Syntheses, structures and luminescent properties of two one-dimensional uranium oxyfluorides. Inorganic Chemistry Communication, 2012, 23, 46-49.	3.9	11
99	Facile and rapid fabrication of nanostructured lanthanide coordination polymers as selective luminescent probes in aqueous solution. Journal of Materials Chemistry, 2012, 22, 6819.	6.7	161
100	Highly selective acetone fluorescent sensors based on microporous Cd(ii) metal–organic frameworks. Journal of Materials Chemistry, 2012, 22, 23201.	6.7	140
101	Microwaveâ€Assisted Modular Fabrication of Nanoscale Luminescent Metalâ€Organic Framework for Molecular Sensing. ChemPhysChem, 2012, 13, 2734-2738.	2.1	67
102	(NH4)6[Mn3B6P9O36(OH)3]·4H2O: A new open-framework manganese borophosphate synthesized by using boric acid flux method. Dalton Transactions, 2011, 40, 2549.	3.3	22
103	Hydrothermal synthesis of isostructural open-framework manganese and iron borophosphates: Effect of the organic templates in determining the pore shapes. Solid State Sciences, 2011, 13, 757-761.	3.2	11
104	lonothermal Synthesis of Extraâ€Largeâ€Pore Openâ€Framework Nickel Phosphite 5 H ₃ Oâ<[Ni ₈ (HPO ₃) ₉ Cl ₃]â<1.5 H Magnetic Anisotropy of the Antiferromagnetism. Angewandte Chemie - International Edition, 2010, 49, 2328-2331.	_{213.8}	ub>O:
105	Spontaneous crystallization of a new chiral open-framework borophosphate in the ionothermal system. Dalton Transactions, 2010, 39, 1713.	3.3	24
106	Synthesis, structure and magnetic property of a new organo-templated mixed-valent iron(ii, iii) borophosphate. Journal of Materials Chemistry, 2009, 19, 4523.	6.7	16
107	Na2[VB3P2O12(OH)]·2.92H2O: A New Open-Framework Vanadium Borophosphate Containing Extra-Large 16-Ring Pore Openings and 128166 Super Cavities Synthesized by Using the Boric Acid Flux Method. Chemistry of Materials, 2008, 20, 4900-4905.	6.7	37