Dennis Kätzel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5905798/publications.pdf

Version: 2024-02-01

22 papers 982 citations

758635 12 h-index 713013 21 g-index

27 all docs

27 docs citations

27 times ranked

1651 citing authors

#	Article	IF	CITATIONS
1	Open-source, Python-based, hardware and software for controlling behavioural neuroscience experiments. ELife, 2022, 11 , .	2.8	26
2	Distinct contributions of GluA1-containing AMPA receptors of different hippocampal subfields to salience processing, memory and impulse control. Translational Psychiatry, 2022, 12, 102.	2.4	8
3	Lack of redundancy between electrophysiological measures of long-range neuronal communication. BMC Biology, 2021, 19, 24.	1.7	8
4	Delayed-matching-to-position working memory in mice relies on NMDA-receptors in prefrontal pyramidal cells. Scientific Reports, 2021, 11, 8788.	1.6	12
5	Control of impulsivity by Gi-protein signalling in layer-5 pyramidal neurons of the anterior cingulate cortex. Communications Biology, 2021, 4, 662.	2.0	15
6	A low-cost open-source 5-choice operant box system optimized for electrophysiology and optophysiology in mice. Scientific Reports, 2021, 11, 22279.	1.6	8
7	Hippocampal Hyperactivity as a Druggable Circuit-Level Origin of Aberrant Salience in Schizophrenia. Frontiers in Pharmacology, 2020, 11, 486811.	1.6	27
8	Operant Assessment of DMTP Spatial Working Memory in Mice. Frontiers in Behavioral Neuroscience, 2019, 13, 193.	1.0	9
9	Hippocampal–prefrontal coherence mediates working memory and selective attention at distinct frequency bands and provides a causal link between schizophrenia and its risk gene GRIA1. Translational Psychiatry, 2019, 9, 142.	2.4	51
10	Pharmacokinetic and pharmacodynamic actions of clozapine-N-oxide, clozapine, and compound 21 in DREADD-based chemogenetics in mice. Scientific Reports, 2019, 9, 4522.	1.6	181
11	Can N-Methyl-D-Aspartate Receptor Hypofunction in Schizophrenia Be Localized to an Individual Cell Type?. Frontiers in Psychiatry, 2019, 10, 835.	1.3	26
12	Schizophrenia-related cognitive dysfunction in the Cyclin-D2 knockout mouse model of ventral hippocampal hyperactivity. Translational Psychiatry, 2018, 8, 212.	2.4	27
13	Optogenetic induction of the schizophrenia-related endophenotype of ventral hippocampal hyperactivity causes rodent correlates of positive and cognitive symptoms. Scientific Reports, 2018, 8, 12871.	1.6	22
14	Stability and Function of Hippocampal Mossy Fiber Synapses Depend on Bcl11b/Ctip2. Frontiers in Molecular Neuroscience, 2018, 11, 103.	1.4	21
15	Gene-Environment Interaction in a Conditional NMDAR-Knockout Model of Schizophrenia. Frontiers in Behavioral Neuroscience, 2018, 12, 332.	1.0	7
16	Knockout of NMDA-receptors from parvalbumin interneurons sensitizes to schizophrenia-related deficits induced by MK-801. Translational Psychiatry, 2016, 6, e778-e778.	2.4	91
17	GABAergic interneurons form transient layer-specific circuits in early postnatal neocortex. Nature Communications, 2016, 7, 10584.	5.8	66
18	CHAPTER 10. Optogenetic and Chemogenetic Tools for Drug Discovery in Schizophrenia. RSC Drug Discovery Series, 2015, , 234-272.	0.2	1

#	Article	IF	CITATIONS
19	Experience-Dependent Rewiring of Specific Inhibitory Connections in Adult Neocortex. PLoS Biology, 2014, 12, e1001798.	2.6	22
20	Chemical–genetic attenuation of focal neocortical seizures. Nature Communications, 2014, 5, 3847.	5.8	118
21	The columnar and laminar organization of inhibitory connections to neocortical excitatory cells. Nature Neuroscience, 2011, 14, 100-107.	7.1	223
22	Optogenetic Mapping of Neuronal Connections and their Plasticity., 0,, 224-238.		0