Richard Catrambone

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5905676/publications.pdf

Version: 2024-02-01

57 papers

3,544 citations

28 h-index 223716 46 g-index

59 all docs 59 docs citations

59 times ranked 2057 citing authors

#	Article	IF	CITATIONS
1	Overcoming contextual limitations on problem-solving transfer Journal of Experimental Psychology: Learning Memory and Cognition, 1989, 15, 1147-1156.	0.7	408
2	A psychological perspective on augmented reality in the mathematics classroom. Computers and Education, 2013, 68, 536-544.	5.1	352
3	The subgoal learning model: Creating better examples so that students can solve novel problems Journal of Experimental Psychology: General, 1998, 127, 355-376.	1.5	254
4	An evaluation of space-filling information visualizations for depicting hierarchical structures. International Journal of Human Computer Studies, 2000, 53, 663-694.	3.7	203
5	Evaluating animations as student aids in learning computer algorithms. Computers and Education, 1999, 33, 253-278.	5.1	190
6	Health Mashups. ACM Transactions on Computer-Human Interaction, 2013, 20, 1-27.	4.6	184
7	Designing Instructional Examples to Reduce Intrinsic Cognitive Load: Molar versus Modular Presentation of Solution Procedures. Instructional Science, 2004, 32, 33-58.	1.1	162
8	Procedural Instructions, Principles, and Examples. Human Factors, 2011, 53, 749-770.	2.1	126
9	Can learning from molar and modular worked examples be enhanced by providing instructional explanations and prompting self-explanations?. Learning and Instruction, 2006, 16, 104-121.	1.9	124
10	Subgoal-labeled instructional material improves performance and transfer in learning to develop mobile applications. , 2012 , , .		110
11	Generalizing solution procedures learned from examples Journal of Experimental Psychology: Learning Memory and Cognition, 1996, 22, 1020-1031.	0.7	105
12	Aiding subgoal learning: Effects on transfer Journal of Educational Psychology, 1995, 87, 5-17.	2.1	100
13	Improving examples to improve transfer to novel problems. Memory and Cognition, 1994, 22, 606-615.	0.9	92
14	Learning subgoals and methods for solving probability problems. Memory and Cognition, 1990, 18, 593-603.	0.9	88
15	Social Facilitation Effects of Virtual Humans. Human Factors, 2007, 49, 1054-1060.	2.1	87
16	Establishing tradeoffs that leverage attention for utility: empirically evaluating information display in notification systems. International Journal of Human Computer Studies, 2003, 58, 547-582.	3.7	76
17	Making the abstract concrete: Visualizing mathematical solution procedures. Computers in Human Behavior, 2006, 22, 9-25.	5.1	67
18	The impact of learner characteristics on information utilization strategies, cognitive load experienced, and performance in hypermedia learning. Learning and Instruction, 2009, 19, 387-401.	1.9	65

#	Article	lF	CITATIONS
19	The Role of Self-Schemas in Going Beyond the Information Given. Social Cognition, 1987, 5, 349-368.	0.5	64
20	Is the Self-Concept a Habitual Referent in Judgments of Similarity?. Psychological Science, 1996, 7, 158-163.	1.8	52
21	Using Animation to Help Students Learn Computer Algorithms. Human Factors, 2002, 44, 495-511.	2.1	44
22	Varying effects of subgoal labeled expository text in programming, chemistry, and statistics. Instructional Science, 2018, 46, 707-722.	1.1	43
23	A taxonomy to define courses that mix face-to-face and online learning. Educational Research Review, 2016, 19, 104-118.	4.1	42
24	Aiding Transfer in Statistics: Examining the Use of Conceptually Oriented Equations and Elaborations During Subgoal Learning Journal of Educational Psychology, 2003, 95, 762-773.	2.1	39
25	Tale of two curricula: The performance of 2000 students in introductory electromagnetism. Physical Review Physics Education Research, 2009, 5, .	1.7	39
26	The effects of surface and structural feature matches on the access of story analogs. Journal of Experimental Psychology: Learning Memory and Cognition, 2002, 28, 318-34.	0.7	38
27	The effects of surface and structural feature matches on the access of story analogs Journal of Experimental Psychology: Learning Memory and Cognition, 2002, 28, 318-334.	0.7	37
28	Acquisition of procedures: The effects of example elaborations and active learning exercises. Learning and Instruction, 2006, 16, 139-153.	1.9	33
29	Specific Versus General Procedures in Instructions. Human-Computer Interaction, 1990, 5, 49-93.	3.1	31
30	Improving problem solving with subgoal labels in expository text and worked examples. Learning and Instruction, 2016, 42, 58-71.	1.9	28
31	Employing subgoals in computer programming education. Computer Science Education, 2016, 26, 44-67.	2.7	26
32	The role of perceptually represented structure in analogical problem solving. Memory and Cognition, 2006, 34, 1126-1132.	0.9	25
33	An investigation of 2D and 3D spatial and mathematical abilities. Design Studies, 2006, 27, 505-524.	1.9	21
34	Following instructions: Effects of principles and examples Journal of Experimental Psychology: Applied, 1995, 1, 227-244.	0.9	17
35	Finding the Best Types of Guidance for Constructing Self-Explanations of Subgoals in Programming. Journal of the Learning Sciences, 2019, 28, 108-151.	2.0	13
36	ECA as User Interface Paradigm. Human-computer Interaction Series, 2004, , 239-267.	0.4	13

#	Article	IF	CITATIONS
37	Reasoning about curvilinear motion: Using principles or analogy. Memory and Cognition, 1995, 23, 368-373.	0.9	12
38	Culture and perceptions of self–other similarity. International Journal of Psychology, 2000, 35, 287-293.	1.7	12
39	The effect of camera perspective and session duration on training decision making in a serious video game. , 2013, , .		12
40	Presenting Movement in a Computer-Based Dance Tutor. International Journal of Human-Computer Interaction, 2003, 15, 433-452.	3.3	11
41	Using Learners' Self-Explanations of Subgoals to Guide Initial Problem Solving in App Inventor. , 2017, , .		11
42	Aggregation Bias and the Use of Regression in Evaluating Models of Human Performance. Human Factors, 1993, 35, 397-411.	2.1	9
43	Improving problem solving performance in computer-based learning environments through subgoal labels. , 2014, , .		9
44	PML: adding flexibility to multimedia presentations. IEEE MultiMedia, 1999, 6, 40-52.	1.5	7
45	The effectiveness of intelligent tutoring on training in a video game. , 2013, , .		7
46	Scaffolding problem solving with learners' own self explanations of subgoals. Journal of Computing in Higher Education, 2021, 33, 499-523.	3.9	7
47	Is more information better? Examining the effects of visual and cognitive fidelity on learning in a serious video game. , 2014, , .		5
48	Designing for Spectators and Coaches: Social Support in Pervasive Health Games for Youth. , 2013, , .		4
49	Social Responses to Virtual Humans: The Effect of Human-Like Characteristics. Applied Sciences (Switzerland), 2021, 11, 7214.	1.3	3
50	The effects of timing of exposure to principles and procedural instruction specificity on learning an electrical troubleshooting skill Journal of Experimental Psychology: Applied, 2015, 21, 383-394.	0.9	2
51	Constraining Presentation Pace and Using Multimodal Materials: Intertwined Design Considerations?. Proceedings of the Human Factors and Ergonomics Society, 2008, 52, 552-556.	0.2	1
52	Instruction Use Depends on the Level of Details. Proceedings of the Human Factors and Ergonomics Society, 2014, 58, 2365-2369.	0.2	1
53	Specific versus General Instructions: Initial Performance and Later Transfer. Proceedings of the Human Factors Society Annual Meeting, 1989, 33, 1320-1323.	0.1	0
54	Problem Solving with Color: Color's Effect on Affect and Problem Solving with Subgoal Labels. Proceedings of the Human Factors and Ergonomics Society, 2018, 62, 1166-1170.	0.2	0

#	Article	IF	CITATIONS
55	Training for Generalization: The Role of Integrated Skills and Knowledge in Technology Domains. Proceedings of the Human Factors and Ergonomics Society, 2018, 62, 1434-1438.	0.2	O
56	Productive Failure and Subgoal Scaffolding in Novel Domains. Lecture Notes in Computer Science, 2019, , 282-300.	1.0	0
57	Subgoal Learning. , 2012, , 3230-3233.		0