## Donatienne Tyteca

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5905461/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                               | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Surface cholesterol-enriched domains specifically promote invasion of breast cancer cell lines by controlling invadopodia and extracellular matrix degradation. Cellular and Molecular Life Sciences, 2022, 79, .                                     | 5.4  | 14        |
| 2  | Impaired Cytoskeletal and Membrane Biophysical Properties of Acanthocytes in<br>Hypobetalipoproteinemia – A Case Study. Frontiers in Physiology, 2021, 12, 638027.                                                                                    | 2.8  | 6         |
| 3  | Interplay Between Plasma Membrane Lipid Alteration, Oxidative Stress and Calcium-Based Mechanism<br>for Extracellular Vesicle Biogenesis From Erythrocytes During Blood Storage. Frontiers in<br>Physiology, 2020, 11, 712.                           | 2.8  | 28        |
| 4  | Labelâ€Free Imaging of Cholesterol Assemblies Reveals Hidden Nanomechanics of Breast Cancer Cells.<br>Advanced Science, 2020, 7, 2002643.                                                                                                             | 11.2 | 21        |
| 5  | Aberrant Membrane Composition and Biophysical Properties Impair Erythrocyte Morphology and Functionality in Elliptocytosis. Biomolecules, 2020, 10, 1120.                                                                                             | 4.0  | 10        |
| 6  | Regulation of Membrane Calcium Transport Proteins by the Surrounding Lipid Environment.<br>Biomolecules, 2019, 9, 513.                                                                                                                                | 4.0  | 37        |
| 7  | The activity of the saponin ginsenoside Rh2 is enhanced by the interaction with membrane sphingomyelin but depressed by cholesterol. Scientific Reports, 2019, 9, 7285.                                                                               | 3.3  | 15        |
| 8  | Nanoscale membrane architecture of healthy and pathological red blood cells. Nanoscale Horizons, 2018, 3, 293-304.                                                                                                                                    | 8.0  | 42        |
| 9  | Spatial Relationship and Functional Relevance of Three Lipid Domain Populations at the Erythrocyte<br>Surface. Cellular Physiology and Biochemistry, 2018, 51, 1544-1565.                                                                             | 1.6  | 32        |
| 10 | Plasma Membrane Lipid Domains as Platforms for Vesicle Biogenesis and Shedding?. Biomolecules, 2018, 8, 94.                                                                                                                                           | 4.0  | 112       |
| 11 | High-resolution mapping and recognition of lipid domains using AFM with toxin-derivatized probes.<br>Chemical Communications, 2018, 54, 6903-6906.                                                                                                    | 4.1  | 20        |
| 12 | Membrane cholesterol delays cellular apoptosis induced by ginsenoside Rh2, a steroid saponin.<br>Toxicology and Applied Pharmacology, 2018, 352, 59-67.                                                                                               | 2.8  | 29        |
| 13 | Tuning of Differential Lipid Order Between Submicrometric Domains and Surrounding Membrane<br>Upon Erythrocyte Reshaping. Cellular Physiology and Biochemistry, 2018, 48, 2563-2582.                                                                  | 1.6  | 22        |
| 14 | Non-senescent keratinocytes organize in plasma membrane submicrometric lipid domains enriched in<br>sphingomyelin and involved in re-epithelialization. Biochimica Et Biophysica Acta - Molecular and Cell<br>Biology of Lipids, 2017, 1862, 958-971. | 2.4  | 8         |
| 15 | Lipid Domains and Membrane (Re)Shaping: From Biophysics to Biology. Springer Series in Biophysics, 2017, , 121-175.                                                                                                                                   | 0.4  | 7         |
| 16 | Recent progress on lipid lateral heterogeneity in plasma membranes: From rafts to submicrometric domains. Progress in Lipid Research, 2016, 62, 1-24.                                                                                                 | 11.6 | 134       |
| 17 | Regulation of Macrophage Motility by the Water Channel Aquaporin-1: Crucial Role of MO/M2<br>Phenotype Switch. PLoS ONE, 2015, 10, e0117398.                                                                                                          | 2.5  | 28        |
| 18 | Cholesterol segregates into submicrometric domains at the living erythrocyte membrane: evidence and regulation. Cellular and Molecular Life Sciences, 2015, 72, 4633-4651.                                                                            | 5.4  | 46        |

**DONATIENNE TYTECA** 

| #  | Article                                                                                                                                                                      | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Endogenous sphingomyelin segregates into submicrometric domains in the living erythrocyte membrane. Journal of Lipid Research, 2014, 55, 1331-1342.                          | 4.2 | 57        |
| 20 | PEGylation of antibody fragments greatly increases their local residence time following delivery to the respiratory tract. Journal of Controlled Release, 2014, 187, 91-100. | 9.9 | 72        |
| 21 | Micrometric segregation of fluorescent membrane lipids: relevance for endogenous lipids and biogenesis in erythrocytes. Journal of Lipid Research, 2013, 54, 1066-1076.      | 4.2 | 39        |
| 22 | Segregation of Fluorescent Membrane Lipids into Distinct Micrometric Domains: Evidence for Phase Compartmentation of Natural Lipids?. PLoS ONE, 2011, 6, e17021.             | 2.5 | 25        |