Esteban Veiga

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5904978/publications.pdf

Version: 2024-02-01

361413 454955 2,037 31 20 30 citations h-index g-index papers 33 33 33 2510 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	From cellular microbiology to bacteriaâ€based next generations of cancer immunotherapies. Cellular Microbiology, 2020, 22, e13187.	2.1	3
2	Conventional CD4+ T cells present bacterial antigens to induce cytotoxic and memory CD8+ T cell responses. Nature Communications, 2017, 8, 1591.	12.8	26
3	Close Encounters of Lymphoid Cells and Bacteria. Frontiers in Immunology, 2016, 7, 405.	4.8	8
4	Clathrin regulates lymphocyte migration by driving actin accumulation at the cellular leading edge. European Journal of Immunology, 2016, 46, 2376-2387.	2.9	9
5	CD81 Controls Immunity to Listeria Infection through Rac-Dependent Inhibition of Proinflammatory Mediator Release and Activation of Cytotoxic T Cells. Journal of Immunology, 2015, 194, 6090-6101.	0.8	14
6	T Cells Kill Bacteria Captured by Transinfection from Dendritic Cells and Confer Protection in Mice. Cell Host and Microbe, 2014, 15, 611-622.	11.0	30
7	Miro-1 Links Mitochondria and Microtubule Dynein Motors To Control Lymphocyte Migration and Polarity. Molecular and Cellular Biology, 2014, 34, 1412-1426.	2.3	100
8	<i>Escherichia coli</i> Producing CNF1 Toxin Hijacks Tollip to Trigger Rac1â€Dependent Cell Invasion. Traffic, 2011, 12, 579-590.	2.7	49
9	The mitochondrial fission factor dynamin-related protein 1 modulates T-cell receptor signalling at the immune synapse. EMBO Journal, 2011, 30, 1238-1250.	7.8	146
10	Endosomal clathrin drives actin accumulation at the immunological synapse. Journal of Cell Science, 2011, 124, 820-830.	2.0	80
11	CD44-independent activation of the Met signaling pathway by HGF and InlB. Microbes and Infection, 2010, 12, 919-927.	1.9	11
12	Role for CD2AP and Other Endocytosis-Associated Proteins in Enteropathogenic <i>Escherichia coli</i> Pedestal Formation. Infection and Immunity, 2010, 78, 3316-3322.	2.2	17
13	F-actin-binding protein drebrin regulates CXCR4 recruitment to the immune synapse. Journal of Cell Science, 2010, 123, 1160-1170.	2.0	54
14	The involvement of CD2AP and endocytic proteins during enteropathogenic E. coli (EPEC) pedestal formation. FASEB Journal, 2010, 24, 822.6.	0.5	О
15	HadA is an atypical new multifunctional trimeric coiled-coil adhesin ofHaemophilus influenzaebiogroupaegyptius, which promotes entry into host cells. Cellular Microbiology, 2009, 11, 1044-1063.	2.1	35
16	<i>Candida albicans</i> internalization by host cells is mediated by a clathrin-dependent mechanism. Cellular Microbiology, 2009, 11, 1179-1189.	2.1	128
17	Correlative Light/Electron Microscopy: a Tool for Investigating Infectious Diseases. Microscopy and Microanalysis, 2009, 15, 862-863.	0.4	1
18	Role of Clathrin in the Inmune Synapse Formation. Microscopy and Microanalysis, 2009, 15, 860-861.	0.4	O

#	Article	IF	Citations
19	Successive post-translational modifications of E-cadherin are required for InlA-mediated internalization of <i>Listeria monocytogenes </i> . Cellular Microbiology, 2008, 10, 2208-2222.	2.1	105
20	Listeria InlB Takes a Different Route to Met. Cell, 2007, 130, 218-219.	28.9	9
21	Invasive and Adherent Bacterial Pathogens Co-Opt Host Clathrin for Infection. Cell Host and Microbe, 2007, 2, 340-351.	11.0	198
22	Type II phosphatidylinositol 4-kinases promote Listeria monocytogenes entry into target cells. Cellular Microbiology, 2007, 9, 2381-2390.	2.1	69
23	The role of clathrin-dependent endocytosis in bacterial internalization. Trends in Cell Biology, 2006, 16, 499-504.	7.9	106
24	Listeria hijacks the clathrin-dependent endocytic machinery to invade mammalian cells. Nature Cell Biology, 2005, 7, 894-900.	10.3	295
25	Ubiquitination of intracellular bacteria: a new bacteria-sensing system?. Trends in Cell Biology, 2005, 15, 2-5.	7.9	19
26	Ku70, a Component of DNA-Dependent Protein Kinase, Is a Mammalian Receptor for Rickettsia conorii. Cell, 2005, 123, 1013-1023.	28.9	184
27	Structural tolerance of bacterial autotransporters for folded passenger protein domains. Molecular Microbiology, 2004, 52, 1069-1080.	2.5	83
28	Autotransporters as Scaffolds for Novel Bacterial Adhesins: Surface Properties of Escherichia coli Cells Displaying Jun/Fos Dimerization Domains. Journal of Bacteriology, 2003, 185, 5585-5590.	2.2	45
29	Neutralizationof Enteric Coronaviruses with Escherichia coli CellsExpressing Single-Chain Fv-AutotransporterFusions. Journal of Virology, 2003, 77, 13396-13398.	3.4	22
30	Probing secretion and translocation of a \hat{I}^2 -autotransporter using a reporter single-chain Fv as a cognate passenger domain. Molecular Microbiology, 2002, 33, 1232-1243.	2.5	80
31	Export of autotransported proteins proceeds through an oligomeric ring shaped by C-terminal domains. EMBO Journal, 2002, 21, 2122-2131.	7.8	110