Jan Harms

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/5904846/jan-harms-publications-by-year.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

81 216 269 47,139 h-index g-index citations papers 6.12 56,742 289 5.9 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
269	On the Single-event-based Identification of Primordial Black Hole Mergers at Cosmological Distances. <i>Astrophysical Journal Letters</i> , 2022 , 931, L12	7.9	O
268	Lunar Gravitational-wave Antenna. Astrophysical Journal, 2021, 910, 1	4.7	12
267	KAGRA underground environment and lessons for the Einstein Telescope. <i>Physical Review D</i> , 2021 , 104,	4.9	5
266	Lightsaber: A Simulator of the Angular Sensing and Control System in LIGO. <i>Galaxies</i> , 2021 , 9, 61	2	O
265	Observation of a potential future sensitivity limitation from ground motion at LIGO Hanford. <i>Physical Review D</i> , 2020 , 101,	4.9	8
264	Newtonian-noise reassessment for the Virgo gravitational-wave observatory including local recess structures. <i>Classical and Quantum Gravity</i> , 2020 , 37, 105007	3.3	7
263	Model comparison from LIGOVirgo data on GW170817I binary components and consequences for the merger remnant. <i>Classical and Quantum Gravity</i> , 2020 , 37, 045006	3.3	69
262	A guide to LIGON irgo detector noise and extraction of transient gravitational-wave signals. <i>Classical and Quantum Gravity</i> , 2020 , 37, 055002	3.3	78
261	A cryogenic silicon interferometer for gravitational-wave detection. <i>Classical and Quantum Gravity</i> , 2020 , 37, 165003	3.3	50
2 60	ELGARB European Laboratory for Gravitation and Atom-interferometric Research. <i>Classical and Quantum Gravity</i> , 2020 , 37, 225017	3.3	24
259	Machine learning for gravitational-wave detection: surrogate Wiener filtering for the prediction and optimized cancellation of Newtonian noise at Virgo. <i>Classical and Quantum Gravity</i> , 2020 , 37, 19501	<i>∂</i> .3	6
258	Seismic array measurements at Virgo® west end building for the configuration of a Newtonian-noise cancellation system. <i>Classical and Quantum Gravity</i> , 2020 , 37, 025005	3.3	9
257	Simulations of Gravitoelastic Correlations for the Sardinian Candidate Site of the Einstein Telescope. <i>Journal of Geophysical Research: Solid Earth</i> , 2020 , 125, e2020JB020401	3.6	1
256	Multiband gravitational-wave parameter estimation: A study of future detectors. <i>Physical Review D</i> , 2020 , 102,	4.9	10
255	Site-selection criteria for the Einstein Telescope. <i>Review of Scientific Instruments</i> , 2020 , 91, 094504	1.7	18
254	Searching for cosmological gravitational-wave backgrounds with third-generation detectors in the presence of an astrophysical foreground. <i>Physical Review D</i> , 2020 , 102,	4.9	15
253	The advanced Virgo longitudinal control system for the O2 observing run. <i>Astroparticle Physics</i> , 2020 , 116, 102386	2.4	7

(2019-2019)

252	Binary Black Hole Population Properties Inferred from the First and Second Observing Runs of Advanced LIGO and Advanced Virgo. <i>Astrophysical Journal Letters</i> , 2019 , 882, L24	7.9	381
251	Directional limits on persistent gravitational waves using data from Advanced LIGOE first two observing runs. <i>Physical Review D</i> , 2019 , 100,	4.9	31
250	GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs. <i>Physical Review X</i> , 2019 , 9,	9.1	1169
249	Search for the isotropic stochastic background using data from Advanced LIGOE second observing run. <i>Physical Review D</i> , 2019 , 100,	4.9	117
248	A Standard Siren Measurement of the Hubble Constant from GW170817 without the Electromagnetic Counterpart. <i>Astrophysical Journal Letters</i> , 2019 , 871, L13	7.9	77
247	Optimization of seismometer arrays for the cancellation of Newtonian noise from seismic body waves. <i>Classical and Quantum Gravity</i> , 2019 , 36, 145006	3.3	20
246	All-sky search for long-duration gravitational-wave transients in the second Advanced LIGO observing run. <i>Physical Review D</i> , 2019 , 99,	4.9	17
245	Ground motion prediction at gravitational wave observatories using archival seismic data. <i>Classical and Quantum Gravity</i> , 2019 , 36, 085005	3.3	7
244	Search for Multimessenger Sources of Gravitational Waves and High-energy Neutrinos with Advanced LIGO during Its First Observing Run, ANTARES, and IceCube. <i>Astrophysical Journal</i> , 2019 , 870, 134	4.7	23
243	Bilby: A User-friendly Bayesian Inference Library for Gravitational-wave Astronomy. <i>Astrophysical Journal, Supplement Series</i> , 2019 , 241, 27	8	217
242	A Fermi Gamma-Ray Burst Monitor Search for Electromagnetic Signals Coincident with Gravitational-wave Candidates in Advanced LIGO's First Observing Run. <i>Astrophysical Journal</i> , 2019 , 871, 90	4.7	22
241	Searches for Continuous Gravitational Waves from 15 Supernova Remnants and Fomalhaut b with Advanced LIGO. <i>Astrophysical Journal</i> , 2019 , 875, 122	4.7	45
240	Search for Gravitational Waves from a Long-lived Remnant of the Binary Neutron Star Merger GW170817. <i>Astrophysical Journal</i> , 2019 , 875, 160	4.7	60
239	First Measurement of the Hubble Constant from a Dark Standard Siren using the Dark Energy Survey Galaxies and the LIGO/Virgo Binary B lack-hole Merger GW170814. <i>Astrophysical Journal Letters</i> , 2019 , 876, L7	7.9	91
238	Low-latency Gravitational-wave Alerts for Multimessenger Astronomy during the Second Advanced LIGO and Virgo Observing Run. <i>Astrophysical Journal</i> , 2019 , 875, 161	4.7	49
237	Coherence-Based Approaches for Estimating the Composition of the Seismic Wavefield. <i>Journal of Geophysical Research: Solid Earth</i> , 2019 , 124, 2941-2956	3.6	5
236	Search for Transient Gravitational-wave Signals Associated with Magnetar Bursts during Advanced LIGOE Second Observing Run. <i>Astrophysical Journal</i> , 2019 , 874, 163	4.7	17
235	Narrow-band search for gravitational waves from known pulsars using the second LIGO observing run. <i>Physical Review D</i> , 2019 , 99,	4.9	43

234	Searches for Gravitational Waves from Known Pulsars at Two Harmonics in 2015 2 017 LIGO Data. <i>Astrophysical Journal</i> , 2019 , 879, 10	4.7	63
233	All-sky search for continuous gravitational waves from isolated neutron stars using Advanced LIGO O2 data. <i>Physical Review D</i> , 2019 , 100,	4.9	81
232	All-sky search for short gravitational-wave bursts in the second Advanced LIGO and Advanced Virgo run. <i>Physical Review D</i> , 2019 , 100,	4.9	39
231	Tests of General Relativity with GW170817. Physical Review Letters, 2019, 123, 011102	7.4	204
230	Terrestrial gravity fluctuations. <i>Living Reviews in Relativity</i> , 2019 , 22, 1	32.5	30
229	Search for Eccentric Binary Black Hole Mergers with Advanced LIGO and Advanced Virgo during Their First and Second Observing Runs. <i>Astrophysical Journal</i> , 2019 , 883, 149	4.7	36
228	Search for intermediate mass black hole binaries in the first and second observing runs of the Advanced LIGO and Virgo network. <i>Physical Review D</i> , 2019 , 100,	4.9	39
227	Search for Subsolar Mass Ultracompact Binaries in Advanced LIGO's Second Observing Run. <i>Physical Review Letters</i> , 2019 , 123, 161102	7.4	68
226	Constraining the p-Mode-g-Mode Tidal Instability with GW170817. <i>Physical Review Letters</i> , 2019 , 122, 061104	7.4	22
225	Tests of general relativity with the binary black hole signals from the LIGO-Virgo catalog GWTC-1. <i>Physical Review D</i> , 2019 , 100,	4.9	258
224	Increasing the Astrophysical Reach of the Advanced Virgo Detector via the Application of Squeezed Vacuum States of Light. <i>Physical Review Letters</i> , 2019 , 123, 231108	7.4	134
223	Search for Gravitational-wave Signals Associated with Gamma-Ray Bursts during the Second Observing Run of Advanced LIGO and Advanced Virgo. <i>Astrophysical Journal</i> , 2019 , 886, 75	4.7	21
222	Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model. <i>Physical Review D</i> , 2019 , 100,	4.9	31
221	Properties of the Binary Neutron Star Merger GW170817. <i>Physical Review X</i> , 2019 , 9,	9.1	423
220	Normal mode simulation of prompt elastogravity signals induced by an earthquake rupture. <i>Geophysical Journal International</i> , 2019 , 216, 935-947	2.6	10
219	Squeezed vacuum states of light for gravitational wave detectors. <i>Reports on Progress in Physics</i> , 2019 , 82, 016905	14.4	49
218	Control strategy to limit duty cycle impact of earthquakes on the LIGO gravitational-wave detectors. <i>Classical and Quantum Gravity</i> , 2018 , 35, 055004	3.3	16
217	Effects of data quality vetoes on a search for compact binary coalescences in Advanced LIGO first observing run. Classical and Quantum Gravity, 2018, 35, 065010	3.3	62

(2017-2018)

216	GW170817: Implications for the Stochastic Gravitational-Wave Background from Compact Binary Coalescences. <i>Physical Review Letters</i> , 2018 , 120, 091101	7.4	120
215	All-sky search for long-duration gravitational wave transients in the first Advanced LIGO observing run. <i>Classical and Quantum Gravity</i> , 2018 , 35, 065009	3.3	12
214	First Search for Nontensorial Gravitational Waves from Known Pulsars. <i>Physical Review Letters</i> , 2018 , 120, 031104	7.4	50
213	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. <i>Living Reviews in Relativity</i> , 2018 , 21, 3	32.5	543
212	Impact of infrasound atmospheric noise on gravity detectors used for astrophysical and geophysical applications. <i>Physical Review D</i> , 2018 , 97,	4.9	30
211	Suspension-thermal noise in springEntispring systems for future gravitational-wave detectors. <i>Classical and Quantum Gravity</i> , 2018 , 35, 025008	3.3	5
21 0	Full band all-sky search for periodic gravitational waves in the O1 LIGO data. <i>Physical Review D</i> , 2018 , 97,	4.9	37
209	Constraints on cosmic strings using data from the first Advanced LIGO observing run. <i>Physical Review D</i> , 2018 , 97,	4.9	60
208	Measurement and subtraction of Schumann resonances at gravitational-wave interferometers. <i>Physical Review D</i> , 2018 , 97,	4.9	30
207	Earthquake Early Warning Using Future Generation Gravity Strainmeters. <i>Journal of Geophysical Research: Solid Earth</i> , 2018 , 123, 10,889	3.6	8
206	Search for Subsolar-Mass Ultracompact Binaries in Advanced LIGO's First Observing Run. <i>Physical Review Letters</i> , 2018 , 121, 231103	7.4	49
205	Implications of Dedicated Seismometer Measurements on Newtonian-Noise Cancellation for Advanced LIGO. <i>Physical Review Letters</i> , 2018 , 121, 221104	7.4	28
204	GW170817: Measurements of Neutron Star Radii and Equation of State. <i>Physical Review Letters</i> , 2018 , 121, 161101	7.4	867
203	Calibration of advanced Virgo and reconstruction of the gravitational wave signal h (t) during the observing run O2. <i>Classical and Quantum Gravity</i> , 2018 , 35, 205004	3.3	35
202	Status of Advanced Virgo. EPJ Web of Conferences, 2018, 182, 02003	0.3	4
201	Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background. <i>Physical Review Letters</i> , 2018 , 120, 201102	7.4	60
200	The THESEUS space mission concept: science case, design and expected performances. <i>Advances in Space Research</i> , 2018 , 62, 191-244	2.4	90
199	Limiting the effects of earthquakes on gravitational-wave interferometers. <i>Classical and Quantum Gravity</i> , 2017 , 34, 044004	3.3	13

198	Exploring the sensitivity of next generation gravitational wave detectors. <i>Classical and Quantum Gravity</i> , 2017 , 34, 044001	3.3	454
197	All-sky search for short gravitational-wave bursts in the first Advanced LIGO run. <i>Physical Review D</i> , 2017 , 95,	4.9	54
196	Effects of waveform model systematics on the interpretation of GW150914. <i>Classical and Quantum Gravity</i> , 2017 , 34, 104002	3.3	74
195	Proposal for gravitational-wave detection beyond the standard quantum limit through EPR entanglement. <i>Nature Physics</i> , 2017 , 13, 776-780	16.2	66
194	Observation of Gravitational Waves from a Binary Black Hole Merger 2017 , 291-311		27
193	Upper Limits on the Stochastic Gravitational-Wave Background from Advanced LIGO's First Observing Run. <i>Physical Review Letters</i> , 2017 , 118, 121101	7.4	137
192	Directional Limits on Persistent Gravitational Waves from Advanced LIGO's First Observing Run. <i>Physical Review Letters</i> , 2017 , 118, 121102	7.4	65
191	First Search for Gravitational Waves from Known Pulsars with Advanced LIGO. <i>Astrophysical Journal</i> , 2017 , 839, 12	4.7	107
190	The basic physics of the binary black hole merger GW150914. <i>Annalen Der Physik</i> , 2017 , 529, 1600209	2.6	45
189	GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence. <i>Physical Review Letters</i> , 2017 , 119, 141101	7.4	1270
188	Upper Limits on Gravitational Waves from Scorpius X-1 from a Model-based Cross-correlation Search in Advanced LIGO Data. <i>Astrophysical Journal</i> , 2017 , 847, 47	4.7	35
187	A gravitational-wave standard siren measurement of the Hubble constant. <i>Nature</i> , 2017 , 551, 85-88	50.4	413
186	GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. <i>Physical Review Letters</i> , 2017 , 119, 161101	7.4	4272
185	Multi-messenger Observations of a Binary Neutron Star Merger. <i>Astrophysical Journal Letters</i> , 2017 , 848, L12	7.9	1935
184	Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A. <i>Astrophysical Journal Letters</i> , 2017 , 848, L13	7.9	1614
183	Search for intermediate mass black hole binaries in the first observing run of Advanced LIGO. <i>Physical Review D</i> , 2017 , 96,	4.9	64
182	All-sky search for periodic gravitational waves in the O1 LIGO data. <i>Physical Review D</i> , 2017 , 96,	4.9	54
181	Multi-spatial-mode effects in squeezed-light-enhanced interferometric gravitational wave detectors. <i>Physical Review D</i> , 2017 , 96,	4.9	5

(2016-2017)

180	Search for Gravitational Waves Associated with Gamma-Ray Bursts during the First Advanced LIGO Observing Run and Implications for the Origin of GRB 150906B. <i>Astrophysical Journal</i> , 2017 , 841, 89	4.7	42
179	Search for high-energy neutrinos from gravitational wave event GW151226 and candidate LVT151012 with ANTARES and IceCube. <i>Physical Review D</i> , 2017 , 96,	4.9	32
178	Search for Post-merger Gravitational Waves from the Remnant of the Binary Neutron Star Merger GW170817. <i>Astrophysical Journal Letters</i> , 2017 , 851, L16	7.9	133
177	Estimating the Contribution of Dynamical Ejecta in the Kilonova Associated with GW170817. <i>Astrophysical Journal Letters</i> , 2017 , 850, L39	7.9	127
176	Search for High-energy Neutrinos from Binary Neutron Star Merger GW170817 with ANTARES, IceCube, and the Pierre Auger Observatory. <i>Astrophysical Journal Letters</i> , 2017 , 850, L35	7.9	104
175	GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2. <i>Physical Review Letters</i> , 2017 , 118, 221101	7.4	1609
174	Search for continuous gravitational waves from neutron stars in globular cluster NGC 6544. <i>Physical Review D</i> , 2017 , 95,	4.9	14
173	Search for gravitational waves from Scorpius X-1 in the first Advanced LIGO observing run with a hidden Markov model. <i>Physical Review D</i> , 2017 , 95,	4.9	47
172	Status of the Advanced Virgo gravitational wave detector. <i>International Journal of Modern Physics A</i> , 2017 , 32, 1744003	1.2	5
171	First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data. <i>Physical Review D</i> , 2017 , 96,	4.9	39
170	First low-frequency Einstein@Home all-sky search for continuous gravitational waves in Advanced LIGO data. <i>Physical Review D</i> , 2017 , 96,	4.9	54
169	On the Progenitor of Binary Neutron Star Merger GW170817. <i>Astrophysical Journal Letters</i> , 2017 , 850, L40	7.9	50
168	GW170608: Observation of a 19 Solar-mass Binary Black Hole Coalescence. <i>Astrophysical Journal Letters</i> , 2017 , 851, L35	7.9	809
167	LOCALIZATION AND BROADBAND FOLLOW-UP OF THE GRAVITATIONAL-WAVE TRANSIENT GW150914. <i>Astrophysical Journal Letters</i> , 2016 , 826, L13	7.9	183
166	Comprehensive all-sky search for periodic gravitational waves in the sixth science run LIGO data. <i>Physical Review D</i> , 2016 , 94,	4.9	28
165	Prompt gravity signal induced by the 2011 Tohoku-Oki earthquake. <i>Nature Communications</i> , 2016 , 7, 13349	17.4	39
164	First targeted search for gravitational-wave bursts from core-collapse supernovae in data of first-generation laser interferometer detectors. <i>Physical Review D</i> , 2016 , 94,	4.9	43
163	UPPER LIMITS ON THE RATES OF BINARY NEUTRON STAR AND NEUTRON STAR B LACK HOLE MERGERS FROM ADVANCED LIGOS FIRST OBSERVING RUN. <i>Astrophysical Journal Letters</i> , 2016 , 832, L21	7.9	130

162	Directly comparing GW150914 with numerical solutions of Einstein equations for binary black hole coalescence. <i>Physical Review D</i> , 2016 , 94,	4.9	76
161	All-sky search for long-duration gravitational wave transients with initial LIGO. <i>Physical Review D</i> , 2016 , 93,	4.9	27
160	Search of the Orion spur for continuous gravitational waves using a loosely coherent algorithm on data from LIGO interferometers. <i>Physical Review D</i> , 2016 , 93,	4.9	14
159	First low frequency all-sky search for continuous gravitational wave signals. <i>Physical Review D</i> , 2016 , 93,	4.9	29
158	GW150914: First results from the search for binary black hole coalescence with Advanced LIGO. <i>Physical Review D</i> , 2016 , 93,	4.9	253
157	Search for transient gravitational waves in coincidence with short-duration radio transients during 2007 2013. <i>Physical Review D</i> , 2016 , 93,	4.9	10
156	High-energy neutrino follow-up search of gravitational wave event GW150914 with ANTARES and IceCube. <i>Physical Review D</i> , 2016 , 93,	4.9	80
155	GW150914: Implications for the Stochastic Gravitational-Wave Background from Binary Black Holes. <i>Physical Review Letters</i> , 2016 , 116, 131102	7.4	188
154	GW150914: The Advanced LIGO Detectors in the Era of First Discoveries. <i>Physical Review Letters</i> , 2016 , 116, 131103	7.4	328
153	SUPPLEMENT: IOCALIZATION AND BROADBAND FOLLOW-UP OF THE GRAVITATIONAL-WAVE TRANSIENT GW150914[2016, ApJL, 826, L13). <i>Astrophysical Journal, Supplement Series</i> , 2016 , 225, 8	8	38
152	Observing gravitational-wave transient GW150914 with minimal assumptions. <i>Physical Review D</i> , 2016 , 93,	4.9	94
151	Tests of General Relativity with GW150914. <i>Physical Review Letters</i> , 2016 , 116, 221101	7.4	837
150	Properties of the Binary Black Hole Merger GW150914. Physical Review Letters, 2016, 116, 241102	7.4	515
149	GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence. <i>Physical Review Letters</i> , 2016 , 116, 241103	7.4	2136
148	Newtonian-noise cancellation in large-scale interferometric GW detectors using seismic tiltmeters. <i>Classical and Quantum Gravity</i> , 2016 , 33, 234001	3.3	23
147	Binary Black Hole Mergers in the First Advanced LIGO Observing Run. <i>Physical Review X</i> , 2016 , 6,	9.1	723
146	ASTROPHYSICAL IMPLICATIONS OF THE BINARY BLACK HOLE MERGER GW150914. <i>Astrophysical Journal Letters</i> , 2016 , 818, L22	7.9	512
145	Observation of Gravitational Waves from a Binary Black Hole Merger. <i>Physical Review Letters</i> , 2016 , 116, 061102	7.4	6108

(2015-2016)

144	Transient gravity perturbations from a double-couple in a homogeneous half-space. <i>Geophysical Journal International</i> , 2016 , 205, 1153-1164	2.6	11
143	Low-frequency terrestrial tensor gravitational-wave detector. <i>Classical and Quantum Gravity</i> , 2016 , 33, 075003	3.3	24
142	Newtonian noise cancellation in tensor gravitational wave detector. <i>Journal of Physics: Conference Series</i> , 2016 , 716, 012025	0.3	1
141	Towards a first design of a Newtonian-noise cancellation system for Advanced LIGO. <i>Classical and Quantum Gravity</i> , 2016 , 33, 244001	3.3	23
140	Characterization of transient noise in Advanced LIGO relevant to gravitational wave signal GW150914. Classical and Quantum Gravity, 2016 , 33,	3.3	155
139	SUPPLEMENT: THE RATE OF BINARY BLACK HOLE MERGERS INFERRED FROM ADVANCED LIGO OBSERVATIONS SURROUNDING GW150914[2016, ApJL, 833, L1). <i>Astrophysical Journal, Supplement Series</i> , 2016 , 227, 14	8	52
138	Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo. <i>Living Reviews in Relativity</i> , 2016 , 19, 1	32.5	393
137	Subtraction of correlated noise in global networks of gravitational-wave interferometers. <i>Classical and Quantum Gravity</i> , 2016 , 33, 224003	3.3	21
136	Improved Analysis of GW150914 Using a Fully Spin-Precessing Waveform Model. <i>Physical Review X</i> , 2016 , 6,	9.1	89
135	Results of the deepest all-sky survey for continuous gravitational waves on LIGO S6 data running on the Einstein@Home volunteer distributed computing project. <i>Physical Review D</i> , 2016 , 94,	4.9	29
134	THE RATE OF BINARY BLACK HOLE MERGERS INFERRED FROM ADVANCED LIGO OBSERVATIONS SURROUNDING GW150914. <i>Astrophysical Journal Letters</i> , 2016 , 833, L1	7.9	209
133	MIGA: combining laser and matter wave interferometry for mass distribution monitoring and advanced geodesy 2016 ,		8
132	Searching for stochastic gravitational waves using data from the two colocated LIGO Hanford detectors. <i>Physical Review D</i> , 2015 , 91,	4.9	26
131	Directed search for gravitational waves from Scorpius X-1 with initial LIGO data. <i>Physical Review D</i> , 2015 , 91,	4.9	38
130	Real-time earthquake warning for astronomical observatories. Experimental Astronomy, 2015, 39, 387-4	104 3	2
129	Characterization of the LIGO detectors during their sixth science run. <i>Classical and Quantum Gravity</i> , 2015 , 32, 115012	3.3	790
128	The Advanced Virgo detector. Journal of Physics: Conference Series, 2015, 610, 012014	0.3	18
127	Transient gravity perturbations induced by earthquake rupture. <i>Geophysical Journal International</i> , 2015 , 201, 1416-1425	2.6	36

126	SEARCHES FOR CONTINUOUS GRAVITATIONAL WAVES FROM NINE YOUNG SUPERNOVA REMNANTS. <i>Astrophysical Journal</i> , 2015 , 813, 39	4.7	58
125	Advanced Virgo: a second-generation interferometric gravitational wave detector. <i>Classical and Quantum Gravity</i> , 2015 , 32, 024001	3.3	1567
124	Newtonian-noise cancellation in full-tensor gravitational-wave detectors. <i>Physical Review D</i> , 2015 , 92,	4.9	20
123	Terrestrial Gravity Fluctuations. <i>Living Reviews in Relativity</i> , 2015 , 18, 3	32.5	60
122	Narrow-band search of continuous gravitational-wave signals from Crab and Vela pulsars in Virgo VSR4 data. <i>Physical Review D</i> , 2015 , 91,	4.9	32
121	Constraining the gravitational wave energy density of the Universe using Earth I ring. <i>Physical Review D</i> , 2014 , 90,	4.9	16
120	Implementation of an \$mathcal{F}\$-statistic all-sky search for continuous gravitational waves in Virgo VSR1 data. <i>Classical and Quantum Gravity</i> , 2014 , 31, 165014	3.3	27
119	GRAVITATIONAL WAVES FROM KNOWN PULSARS: RESULTS FROM THE INITIAL DETECTOR ERA. <i>Astrophysical Journal</i> , 2014 , 785, 119	4.7	109
118	Application of a Hough search for continuous gravitational waves on data from the fifth LIGO science run. <i>Classical and Quantum Gravity</i> , 2014 , 31, 085014	3.3	18
117	The NINJA-2 project: detecting and characterizing gravitational waveforms modelled using numerical binary black hole simulations. <i>Classical and Quantum Gravity</i> , 2014 , 31, 115004	3.3	34
116	Search for gravitational wave ringdowns from perturbed intermediate mass black holes in LIGO-Virgo data from 2005 2 010. <i>Physical Review D</i> , 2014 , 89,	4.9	26
115	Search for gravitational waves associated with Fray bursts detected by the interplanetary network. <i>Physical Review Letters</i> , 2014 , 113, 011102	7.4	30
114	Search for gravitational radiation from intermediate mass black hole binaries in data from the second LIGO-Virgo joint science run. <i>Physical Review D</i> , 2014 , 89,	4.9	32
113	Methods and results of a search for gravitational waves associated with gamma-ray bursts using the GEO 600, LIGO, and Virgo detectors. <i>Physical Review D</i> , 2014 , 89,	4.9	25
112	Wiener filtering with a seismic underground array at the Sanford Underground Research Facility. <i>Classical and Quantum Gravity</i> , 2014 , 31, 215003	3.3	13
111	FIRST SEARCHES FOR OPTICAL COUNTERPARTS TO GRAVITATIONAL-WAVE CANDIDATE EVENTS. Astrophysical Journal, Supplement Series, 2014, 211, 7	8	51
110	Constraining the gravitational-wave energy density of the Universe in the range 0.1 Hz to 1 Hz using the Apollo Seismic Array. <i>Physical Review D</i> , 2014 , 90,	4.9	12
109	First all-sky search for continuous gravitational waves from unknown sources in binary systems. <i>Physical Review D</i> , 2014 , 90,	4.9	54

108	Constraints on cosmic strings from the LIGO-Virgo gravitational-wave detectors. <i>Physical Review Letters</i> , 2014 , 112, 131101	7.4	59
107	Improved upper limits on the stochastic gravitational-wave background from 2009-2010 LIGO and Virgo data. <i>Physical Review Letters</i> , 2014 , 113, 231101	7.4	74
106	Multimessenger search for sources of gravitational waves and high-energy neutrinos: Initial results for LIGO-Virgo and IceCube. <i>Physical Review D</i> , 2014 , 90,	4.9	25
105	Passive Newtonian noise suppression for gravitational-wave observatories based on shaping of the local topography. <i>Classical and Quantum Gravity</i> , 2014 , 31, 185011	3.3	15
104	Upper limit on a stochastic background of gravitational waves from seismic measurements in the range 0.05-1 Hz. <i>Physical Review Letters</i> , 2014 , 112, 101102	7.4	18
103	Search for gravitational waves from binary black hole inspiral, merger, and ringdown in LIGO-Virgo data from 2009\(\mathbb{Q}\)010. <i>Physical Review D</i> , 2013 , 87,	4.9	91
102	Search for long-lived gravitational-wave transients coincident with long gamma-ray bursts. <i>Physical Review D</i> , 2013 , 88,	4.9	30
101	Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light. <i>Nature Photonics</i> , 2013 , 7, 613-619	33.9	572
100	A first search for coincident gravitational waves and high energy neutrinos using LIGO, Virgo and ANTARES data from 2007. <i>Journal of Cosmology and Astroparticle Physics</i> , 2013 , 2013, 008-008	6.4	29
	Law fragues to rectail assuitational ways detectors. Physical Davious D. 2012, 99		
99	Low-frequency terrestrial gravitational-wave detectors. <i>Physical Review D</i> , 2013 , 88,	4.9	54
99	Einstein@Home all-sky search for periodic gravitational waves in LIGO S5 data. <i>Physical Review D</i> , 2013 , 87,	4.9	84
	Einstein@Home all-sky search for periodic gravitational waves in LIGO S5 data. <i>Physical Review D</i> ,		
98	Einstein@Home all-sky search for periodic gravitational waves in LIGO S5 data. <i>Physical Review D</i> , 2013 , 87,	4.9	84
98 97	Einstein@Home all-sky search for periodic gravitational waves in LIGO S5 data. <i>Physical Review D</i> , 2013 , 87, Realistic filter cavities for advanced gravitational wave detectors. <i>Physical Review D</i> , 2013 , 88, Parameter estimation for compact binary coalescence signals with the first generation	4·9 4·9	84 75
98 97 96	Einstein@Home all-sky search for periodic gravitational waves in LIGO S5 data. <i>Physical Review D</i> , 2013 , 87, Realistic filter cavities for advanced gravitational wave detectors. <i>Physical Review D</i> , 2013 , 88, Parameter estimation for compact binary coalescence signals with the first generation gravitational-wave detector network. <i>Physical Review D</i> , 2013 , 88, Directed search for continuous gravitational waves from the Galactic center. <i>Physical Review D</i> ,	4·9 4·9 4·9	84 75 122
98 97 96 95	Einstein@Home all-sky search for periodic gravitational waves in LIGO S5 data. <i>Physical Review D</i> , 2013 , 87, Realistic filter cavities for advanced gravitational wave detectors. <i>Physical Review D</i> , 2013 , 88, Parameter estimation for compact binary coalescence signals with the first generation gravitational-wave detector network. <i>Physical Review D</i> , 2013 , 88, Directed search for continuous gravitational waves from the Galactic center. <i>Physical Review D</i> , 2013 , 88, IMPLICATIONS FOR THE ORIGIN OF GRB 051103 FROM LIGO OBSERVATIONS. <i>Astrophysical Journal</i>	4·9 4·9 4·9	84 75 122 57
98 97 96 95 94	Einstein@Home all-sky search for periodic gravitational waves in LIGO S5 data. <i>Physical Review D</i> , 2013 , 87, Realistic filter cavities for advanced gravitational wave detectors. <i>Physical Review D</i> , 2013 , 88, Parameter estimation for compact binary coalescence signals with the first generation gravitational-wave detector network. <i>Physical Review D</i> , 2013 , 88, Directed search for continuous gravitational waves from the Galactic center. <i>Physical Review D</i> , 2013 , 88, IMPLICATIONS FOR THE ORIGIN OF GRB 051103 FROM LIGO OBSERVATIONS. <i>Astrophysical Journal</i> , 2012 , 755, 2 All-sky search for gravitational-wave bursts in the second joint LIGO-Virgo run. <i>Physical Review D</i> ,	4·9 4·9 4·9 4·7	84751225753

90	Search for gravitational waves from low mass compact binary coalescence in LIGOE sixth science run and VirgoE science runs 2 and 3. <i>Physical Review D</i> , 2012 , 85,	4.9	172
89	Publisher Note: Search for gravitational waves associated with the August 2006 timing glitch of the Vela pulsar [Phys. Rev. D 83, 042001 (2011)]. <i>Physical Review D</i> , 2012 , 85,	4.9	2
88	All-sky search for periodic gravitational waves in the full S5 LIGO data. <i>Physical Review D</i> , 2012 , 85,	4.9	61
87	Publisher Note: Search for gravitational waves from compact binary coalescence in LIGO and Virgo data from S5 and VSR1 [Phys. Rev. D 82, 102001 (2010)]. <i>Physical Review D</i> , 2012 , 85,	4.9	2
86	Scientific objectives of Einstein Telescope. Classical and Quantum Gravity, 2012, 29, 124013	3.3	256
85	Seismic topographic scattering in the context of GW detector site selection. <i>Classical and Quantum Gravity</i> , 2012 , 29, 075004	3.3	10
84	SWIFT FOLLOW-UP OBSERVATIONS OF CANDIDATE GRAVITATIONAL-WAVE TRANSIENT EVENTS. Astrophysical Journal, Supplement Series, 2012 , 203, 28	8	57
83	The characterization of Virgo data and its impact on gravitational-wave searches. <i>Classical and Quantum Gravity</i> , 2012 , 29, 155002	3.3	59
82	Large-angle scattered light measurements for quantum-noise filter cavity design studies. <i>Journal of the Optical Society of America A: Optics and Image Science, and Vision</i> , 2012 , 29, 1722-7	1.8	17
81	Subtraction of Newtonian noise using optimized sensor arrays. Physical Review D, 2012, 86,	4.9	66
80	Publisher Note: All-sky search for gravitational-wave bursts in the first joint LIGO-GEO-Virgo run [Phys. Rev. D 81, 102001 (2010)]. <i>Physical Review D</i> , 2012 , 85,	4.9	3
79	First low-latency LIGO+Virgo search for binary inspirals and their electromagnetic counterparts. <i>Astronomy and Astrophysics</i> , 2012 , 541, A155	5.1	69
78	SEARCH FOR GRAVITATIONAL WAVES ASSOCIATED WITH GAMMA-RAY BURSTS DURING LIGO SCIENCE RUN 6 AND VIRGO SCIENCE RUNS 2 AND 3. <i>Astrophysical Journal</i> , 2012 , 760, 12	4.7	94
77	Implementation and testing of the first prompt search for gravitational wave transients with electromagnetic counterparts. <i>Astronomy and Astrophysics</i> , 2012 , 539, A124	5.1	71
76	Velocity and Attenuation Characterization of the LIGO Site near Livingston, Louisiana. <i>Bulletin of the Seismological Society of America</i> , 2011 , 101, 1478-1487	2.3	8
75	SEARCH FOR GRAVITATIONAL WAVE BURSTS FROM SIX MAGNETARS. <i>Astrophysical Journal Letters</i> , 2011 , 734, L35	7.9	47
74	BEATING THE SPIN-DOWN LIMIT ON GRAVITATIONAL WAVE EMISSION FROM THE VELA PULSAR. <i>Astrophysical Journal</i> , 2011 , 737, 93	4.7	75
73	Improving the sensitivity of future GW observatories in the 1110 Hz band: Newtonian and seismic noise. <i>General Relativity and Gravitation</i> , 2011 , 43, 623-656	2.3	40

72	Search for gravitational waves associated with the August 2006 timing glitch of the Vela pulsar. <i>Physical Review D</i> , 2011 , 83,	4.9	40
71	Search for gravitational waves from binary black hole inspiral, merger, and ringdown. <i>Physical Review D</i> , 2011 , 83,	4.9	77
7°	Sensitivity studies for third-generation gravitational wave observatories. <i>Classical and Quantum Gravity</i> , 2011 , 28, 094013	3.3	382
69	Directional limits on persistent gravitational waves using LIGO S5 science data. <i>Physical Review Letters</i> , 2011 , 107, 271102	7.4	85
68	A gravitational wave observatory operating beyond the quantum shot-noise limit. <i>Nature Physics</i> , 2011 , 7, 962-965	16.2	554
67	The third generation of gravitational wave observatories and their science reach. <i>Classical and Quantum Gravity</i> , 2010 , 27, 084007	3.3	214
66	SEARCHES FOR GRAVITATIONAL WAVES FROM KNOWN PULSARS WITH SCIENCE RUN 5 LIGO DATA. <i>Astrophysical Journal</i> , 2010 , 713, 671-685	4.7	140
65	The Einstein Telescope: a third-generation gravitational wave observatory. <i>Classical and Quantum Gravity</i> , 2010 , 27, 194002	3.3	675
64	Characterization of the seismic environment at the Sanford Underground Laboratory, South Dakota. <i>Classical and Quantum Gravity</i> , 2010 , 27, 225011	3.3	24
63	Search for gravitational waves from compact binary coalescence in LIGO and Virgo data from S5 and VSR1. <i>Physical Review D</i> , 2010 , 82,	4.9	100
62	All-sky search for gravitational-wave bursts in the first joint LIGO-GEO-Virgo run. <i>Physical Review D</i> , 2010 , 81,	4.9	81
61	Predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors. <i>Classical and Quantum Gravity</i> , 2010 , 27, 173001	3.3	869
60	SEARCH FOR GRAVITATIONAL-WAVE INSPIRAL SIGNALS ASSOCIATED WITH SHORT GAMMA-RAY BURSTS DURING LIGO'S FIFTH AND VIRGO'S FIRST SCIENCE RUN. <i>Astrophysical Journal</i> , 2010 , 715, 1453	s- 1 :461	79
59	Long term seismic noise acquisition and analysis in the Homestake mine with tunable monolithic sensors. <i>Journal of Physics: Conference Series</i> , 2010 , 228, 012036	0.3	11
58	SEARCH FOR GRAVITATIONAL-WAVE BURSTS ASSOCIATED WITH GAMMA-RAY BURSTS USING DATA FROM LIGO SCIENCE RUN 5 AND VIRGO SCIENCE RUN 1. <i>Astrophysical Journal</i> , 2010 , 715, 1438-1	452	54
57	FIRST SEARCH FOR GRAVITATIONAL WAVES FROM THE YOUNGEST KNOWN NEUTRON STAR. <i>Astrophysical Journal</i> , 2010 , 722, 1504-1513	4.7	95
56	Calibration of the LIGO gravitational wave detectors in the fifth science run. <i>Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment</i> , 2010 , 624, 223-240	1.2	108
55	All-sky LIGO search for periodic gravitational waves in the early fifth-science-run data. <i>Physical Review Letters</i> , 2009 , 102, 111102	7.4	77

54	Simulation of underground gravity gradients from stochastic seismic fields. <i>Physical Review D</i> , 2009 , 80,	4.9	13
53	Observation of a kilogram-scale oscillator near its quantum ground state. <i>New Journal of Physics</i> , 2009 , 11, 073032	2.9	93
52	An upper limit on the stochastic gravitational-wave background of cosmological origin. <i>Nature</i> , 2009 , 460, 990-4	50.4	267
51	Einstein@Home search for periodic gravitational waves in LIGO S4 data. <i>Physical Review D</i> , 2009 , 79,	4.9	77
50	Search for gravitational-wave bursts in the first year of the fifth LIGO science run. <i>Physical Review D</i> , 2009 , 80,	4.9	71
49	LIGO: the Laser Interferometer Gravitational-Wave Observatory. <i>Reports on Progress in Physics</i> , 2009 , 72, 076901	14.4	822
48	Einstein@Home search for periodic gravitational waves in early S5 LIGO data. <i>Physical Review D</i> , 2009 , 80,	4.9	73
47	First LIGO search for gravitational wave bursts from cosmic (super)strings. <i>Physical Review D</i> , 2009 , 80,	4.9	43
46	Search for gravitational waves from low mass compact binary coalescence in 186 days of LIGOS fifth science run. <i>Physical Review D</i> , 2009 , 80,	4.9	100
45	Search for gravitational waves from low mass binary coalescences in the first year of LIGOESS data. <i>Physical Review D</i> , 2009 , 79,	4.9	115
44	Search for gravitational wave ringdowns from perturbed black holes in LIGO S4 data. <i>Physical Review D</i> , 2009 , 80,	4.9	36
43	Search for high frequency gravitational-wave bursts in the first calendar year of LIGOE fifth science run. <i>Physical Review D</i> , 2009 , 80,	4.9	31
42	STACKED SEARCH FOR GRAVITATIONAL WAVES FROM THE 2006 SGR 1900+14 STORM. Astrophysical Journal, 2009 , 701, L68-L74	4.7	40
41	Search for gravitational waves associated with 39 gamma-ray bursts using data from the second, third, and fourth LIGO runs. <i>Physical Review D</i> , 2008 , 77,	4.9	55
40	All-sky search for periodic gravitational waves in LIGO S4 data. <i>Physical Review D</i> , 2008 , 77,	4.9	98
39	Subtraction-noise projection in gravitational-wave detector networks. <i>Physical Review D</i> , 2008 , 77,	4.9	26
38	Search of S3 LIGO data for gravitational wave signals from spinning black hole and neutron star binary inspirals. <i>Physical Review D</i> , 2008 , 78,	4.9	51
37	Astrophysically triggered searches for gravitational waves: status and prospects. <i>Classical and Quantum Gravity</i> , 2008 , 25, 114051	3.3	24

(2006-2008)

36	First joint search for gravitational-wave bursts in LIGO and GEO 600 data. <i>Classical and Quantum Gravity</i> , 2008 , 25, 245008	3.3	19
35	A joint search for gravitational wave bursts with AURIGA and LIGO. <i>Classical and Quantum Gravity</i> , 2008 , 25, 095004	3.3	15
34	Search for gravitational waves from binary inspirals in S3 and S4 LIGO data. <i>Physical Review D</i> , 2008 , 77,	4.9	117
33	Search for gravitational-wave bursts from soft gamma repeaters. <i>Physical Review Letters</i> , 2008 , 101, 211102	7.4	64
32	Implications for the Origin of GRB 070201 from LIGO Observations. <i>Astrophysical Journal</i> , 2008 , 681, 1419-1430	4.7	126
31	Beating the Spin-Down Limit on Gravitational Wave Emission from the Crab Pulsar. <i>Astrophysical Journal</i> , 2008 , 683, L45-L49	4.7	148
30	Searches for periodic gravitational waves from unknown isolated sources and Scorpius X-1: Results from the second LIGO science run. <i>Physical Review D</i> , 2007 , 76,	4.9	116
29	Upper limit map of a background of gravitational waves. <i>Physical Review D</i> , 2007 , 76,	4.9	85
28	Search for gravitational wave radiation associated with the pulsating tail of the SGR 1806\(\textit{D}\)0 hyperflare of 27 December 2004 using LIGO. <i>Physical Review D</i> , 2007 , 76,	4.9	48
27	Search for gravitational-wave bursts in LIGO data from the fourth science run. <i>Classical and Quantum Gravity</i> , 2007 , 24, 5343-5369	3.3	70
26	Quantum-noise power spectrum of fields with discrete classical components. <i>Physical Review A</i> , 2007 , 76,	2.6	4
25	Upper limits on gravitational wave emission from 78 radio pulsars. <i>Physical Review D</i> , 2007 , 76,	4.9	109
24	First cross-correlation analysis of interferometric and resonant-bar gravitational-wave data for stochastic backgrounds. <i>Physical Review D</i> , 2007 , 76,	4.9	33
23	Searching for a Stochastic Background of Gravitational Waves with the Laser Interferometer Gravitational-Wave Observatory. <i>Astrophysical Journal</i> , 2007 , 659, 918-930	4.7	107
22	The GEO-HF project. Classical and Quantum Gravity, 2006, 23, S207-S214	3.3	121
21	Status of the GEO600 detector. Classical and Quantum Gravity, 2006, 23, S71-S78	3.3	120
20	Big Bang Observer and the neutron-star-binary subtraction problem. <i>Physical Review D</i> , 2006 , 73,	4.9	115
19	Search for gravitational waves from binary black hole inspirals in LIGO data. <i>Physical Review D</i> , 2006 , 73,	4.9	68

18	Joint LIGO and TAMA300 search for gravitational waves from inspiralling neutron star binaries. <i>Physical Review D</i> , 2006 , 73,	4.9	38
17	Upper limits from the LIGO and TAMA detectors on the rate of gravitational-wave bursts. <i>Physical Review D</i> , 2005 , 72,	4.9	44
16	The status of GEO 600. Classical and Quantum Gravity, 2005, 22, S193-S198	3.3	20
15	Limits on gravitational-wave emission from selected pulsars using LIGO data. <i>Physical Review Letters</i> , 2005 , 94, 181103	7.4	109
14	Upper limits on gravitational wave bursts in LIGO∃ second science run. <i>Physical Review D</i> , 2005 , 72,	4.9	49
13	Search for gravitational waves from primordial black hole binary coalescences in the galactic halo. <i>Physical Review D</i> , 2005 , 72,	4.9	66
12	Optical transfer functions of Kerr nonlinear cavities and interferometers. <i>Physical Review Letters</i> , 2005 , 95, 193001	7.4	18
11	Search for gravitational waves associated with the gamma ray burst GRB030329 using the LIGO detectors. <i>Physical Review D</i> , 2005 , 72,	4.9	70
10	Status of GEO 600. Classical and Quantum Gravity, 2004, 21, S417-S423	3.3	81
9	Squeezed light for the interferometric detection of high-frequency gravitational waves. <i>Classical and Quantum Gravity</i> , 2004 , 21, S1045-S1051	3.3	24
8	Commissioning, characterization and operation of the dual-recycled GEO 600. <i>Classical and Quantum Gravity</i> , 2004 , 21, S1737-S1745	3.3	15
7	Finite mass beam splitter in high power interferometers. <i>Physical Review D</i> , 2004 , 70,	4.9	9
6	The status of GEO 600 2004 ,		2
5	A report on the status of the GEO 600 gravitational wave detector. <i>Classical and Quantum Gravity</i> , 2003 , 20, S581-S591	3.3	14
4	Detector characterization in GEO 600. Classical and Quantum Gravity, 2003, 20, S731-S739	3.3	
3	Status of the GEO600 gravitational wave detector 2003 ,		2
2	Squeezed-input, optical-spring, signal-recycled gravitational-wave detectors. <i>Physical Review D</i> , 2003 , 68,	4.9	99
1	Characterization of the seismic field at Virgo and improved estimates of Newtonian-noise suppression by recesses. Classical and Quantum Gravity,	3.3	1