
Vladimir Pankratov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/590482/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Luminescence of ODC(II) in quartz and cristobalite glasses. Journal of Non-Crystalline Solids, 2022, 575, 121199.	3.1	4
2	Untangling the controversy on Ce ³⁺ luminescence in LaAlO ₃ crystals. Materials Advances, 2022, 3, 3500-3512.	5.4	7
3	Toward On-Line Slag Composition Analysis: Optical Emissions from Laboratory Electric Arc. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2022, 53, 454-465.	2.1	0
4	Luminescence and Vacuum Ultraviolet Excitation Spectroscopy of Nanophosphors under Synchrotron Irradiation. Physica Status Solidi (B): Basic Research, 2022, 259, .	1.5	4
5	<i>Ab-Initio</i> Calculations of Oxygen Vacancy in Ga ₂ O ₃ Crystals. Latvian Journal of Physics and Technical Sciences, 2021, 58, 3-10.	0.6	12
6	Study of phase composition, photocatalytic activity, and photoluminescence of TiO2 with Eu additive produced by the extraction-pyrolytic method. Journal of Materials Research and Technology, 2021, 13, 2350-2360.	5.8	32
7	Performance and characterization of the FinEstBeAMS beamline at the MAXÂIV Laboratory. Journal of Synchrotron Radiation, 2021, 28, 1620-1630.	2.4	28
8	First Principles Calculations of Atomic and Electronic Structure of TiAl3+- and TiAl2+-Doped YAlO3. Materials, 2021, 14, 5589.	2.9	2
9	Exciton interaction with Ce3+ and Ce4+ ions in (LuGd)3(Ga,Al)5O12 ceramics. Journal of Luminescence, 2021, 237, 118150.	3.1	29
10	Optical properties of powder and ceramics of aluminium oxynitride obtained by self-propagating high-temperature synthesis. Lithuanian Journal of Physics, 2021, 61, .	0.4	2
11	Band Gap Engineering and Trap Depths of Intrinsic Point Defects in RAIO ₃ (R = Y, La, Gd, Yb,) Tj ETC	2q110.78	34314 rgBT /(
12	Vacancy Defects in Ga2O3: First-Principles Calculations of Electronic Structure. Materials, 2021, 14, 7384.	2.9	40
13	Time-resolved luminescence and excitation spectroscopy of co-doped Gd3Ga3Al2O12 scintillating crystals. Scientific Reports, 2020, 10, 20388.	3.3	24
14	Luminescence spectroscopy under synchrotron radiation: From SUPERLUMI to FINESTLUMI. Nuclear Instruments & Methods in Physics Research B, 2020, 474, 35-40.	1.4	19
15	Time resolved luminescence spectroscopy of CsPbBr3 single crystal. Journal of Luminescence, 2020, 225, 117346.	3.1	17
16	Luminescence and vacuum ultraviolet excitation spectroscopy of samarium doped SrB4O7. Journal of Alloys and Compounds, 2020, 826, 154205.	5.5	21
17	Luminescence of divalent lanthanide doped BaBrl single crystal under synchrotron radiation excitations. Nuclear Instruments & Methods in Physics Research B, 2020, 467, 17-20.	1.4	14
18	Luminescence and vacuum ultraviolet excitation spectroscopy of cerium doped Gd3Ga3Al2O12 single crystalline scintillators under synchrotron radiation excitations. Results in Physics, 2020, 16, 103002	4.1	17

#	Article	IF	CITATIONS
19	Defect-related photoluminescence and photoluminescence excitation as a method to study the excitonic bandgap of AlN epitaxial layers: Experimental and <i>ab initio</i> analysis. Applied Physics Letters, 2020, 117, .	3.3	9
20	Low-temperature luminescence of CdI2 under synchrotron radiation. Low Temperature Physics, 2020, 46, 1213-1216.	0.6	0
21	Low-temperature luminescence of ScF3 single crystals under excitation by VUV synchrotron radiation. Low Temperature Physics, 2020, 46, 1196-1200.	0.6	3
22	Low-temperature luminescence of catangasite single crystals under excitation by vacuum ultraviolet synchrotron radiation. Low Temperature Physics, 2020, 46, 1178-1184.	0.6	1
23	Progress in development of a new luminescence setup at the FinEstBeAMS beamline of the MAX IV laboratory. Radiation Measurements, 2019, 121, 91-98.	1.4	39
24	Metallic Contact between MoS ₂ and Ni via Au Nanoglue. Small, 2018, 14, e1704526.	10.0	32
25	Quantification of Bonded Ni Atoms for M-MOS2 Metallic Contact through X-ray Photoemission Electron Microscopy. Microscopy and Microanalysis, 2018, 24, 458-459.	0.4	1
26	FinEstBeaMS – A wide-range Finnish-Estonian Beamline for Materials Science at the 1.5 GeV storage ring at the MAX IV Laboratory. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2017, 859, 83-89.	1.6	55
27	Comparing the luminescence processes of YVO4:Eu and core-shell YVO4@YF3 nanocrystals with bulk-YVO4:Eu. Physica B: Condensed Matter, 2017, 504, 80-85.	2.7	30
28	UV-VUV synchrotron radiation spectroscopy of NiWO4. Low Temperature Physics, 2016, 42, 543-546.	0.6	15
29	Energy transfer of the quantum-cutter couple Pr 3+ –Mn 2+ in CaF 2 :Pr 3+ , Mn 2+ nanoparticles. Journal of Luminescence, 2016, 179, 555-561.	3.1	18
30	Separation of valence states in thin films with mixed V2O5 and V7O16 phases. Journal of Electron Spectroscopy and Related Phenomena, 2016, 211, 47-54.	1.7	7
31	Emerging blueâ€UV luminescence in cerium doped YAG nanocrystals. Physica Status Solidi - Rapid Research Letters, 2016, 10, 475-479.	2.4	15
32	Oxygen influence on luminescence properties of rare-earth doped NaLaF 4. Journal of Luminescence, 2016, 179, 16-20.	3.1	21
33	Vacuum ultraviolet excitation luminescence spectroscopy of few-layered MoS ₂ . Journal of Physics Condensed Matter, 2016, 28, 015301.	1.8	13
34	Microwave-assisted ionic-liquid-based synthesis of highly crystalline CaMoO4:RE3+ (REÂ=ÂTb, Sm, Eu) and Y2Mo4O15:Eu3+ nanoparticles. Solid State Sciences, 2015, 41, 56-62.	3.2	22
35	Cold nanoparticles on MoS 2 layered crystal flakes. Materials Chemistry and Physics, 2015, 158, 89-95.	4.0	36
36	X-RAY PHOTOEMISSION ELECTRON MICROSCOPE DETERMINATION OF ORIGINS OF ROOM TEMPERATURE FERROMAGNETISM AND PHOTOLUMINESCENCE IN HIGH Co -CONTENT Co _x Zn _{1-x} OSurface Review and Letters, 2014, 21, 1450058.	>FltMs.	7

VLADIMIR PANKRATOV

#	Article	IF	CITATIONS
37	Comparative study of the luminescence properties of macro- and nanocrystalline MgO using synchrotron radiation. Nuclear Instruments & Methods in Physics Research B, 2013, 310, 23-26.	1.4	45
38	Bil3 nanoclusters in melt-grown CdI2 crystals studied by optical absorption spectroscopy. Physica B: Condensed Matter, 2013, 413, 12-14.	2.7	11
39	Luminescence and ultraviolet excitation spectroscopy of SrI2 and SrI2:Eu2+. Radiation Measurements, 2013, 56, 13-17.	1.4	35
40	Vibrational properties of LaPO4 nanoparticles in mid- and far-infrared domain. Journal of Applied Physics, 2012, 112, .	2.5	55
41	Synchrotron radiation studies on luminescence of Eu2+-doped LaCl3 microcrystals embedded in a NaCl matrix. Nuclear Instruments & Methods in Physics Research B, 2012, 274, 78-82.	1.4	21
42	Si nanocrystals embedded in SiO <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mrow><mml:msub><mml:mrow /><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:mrow </mml:msub></mml:mrow></mml:math> : Optical studies in the vacuum ultraviolet range. Physical Review B, 2011, 83, .	3.2	24
43	LaPO4:Ce,Tb and YVO4:Eu nanophosphors: Luminescence studies in the vacuum ultraviolet spectral range. Journal of Applied Physics, 2011, 110, 053522.	2.5	48
44	Electronic excitations in ZnWO4 and ZnxNi1â^'x WO4 (x = 0.1 â^' 0.9) using VUV synchrotron radiation. Open Physics, 2011, 9, .	1.7	17
45	Polar nanoregions in Pb(Mg1/3Nb2/3)O3 (PMN): insights from a supercell approach. Open Physics, 2011, 9, 438-445.	1.7	0
46	Luminescence of nano- and macrosized LaPO4:Ce,Tb excited by synchrotron radiation. Optical Materials, 2011, 33, 1102-1105.	3.6	38
47	Numerical Evidences of Polarization Switching in PMN Type Relaxor Ferroelectrics. Integrated Ferroelectrics, 2011, 123, 32-39.	0.7	0
48	Peculiarities of luminescent properties of cerium doped YAG transparent nanoceramics. Radiation Measurements, 2010, 45, 392-394.	1.4	17
49	Mechanism for energy transfer processes between Ce3+ and Tb3+ in LaPO4:Ce,Tb nanocrystals by time-resolved luminescence spectroscopy. Physica Status Solidi (B): Basic Research, 2010, 247, 2252-2257.	1.5	52
50	Time-resolved cathodoluminescence and photoluminescence of nanoscale oxides. Journal of the European Ceramic Society, 2009, 29, 255-259.	5.7	9
51	Excitonic luminescence in ZnO nanopowders and ceramics. Optical Materials, 2009, 31, 1825-1827.	3.6	11
52	ZnO nanocrystals/SiO2 multilayer structures fabricated by RF-magnetron sputtering. Physica B: Condensed Matter, 2009, 404, 4827-4830.	2.7	10
53	Vertical charge-carrier transport in Si nanocrystal/SiO ₂ multilayer structures. Nanotechnology, 2009, 20, 195201.	2.6	24
54	Luminescence Properties of ZnO Nanocrystals and Ceramics. IEEE Transactions on Nuclear Science, 2008, 55, 1551-1555.	2.0	27

VLADIMIR PANKRATOV

#	Article	IF	CITATIONS
55	Luminescence Properties and Energy Transfer Processes in Nanosized Cerium Doped YAG. IEEE Transactions on Nuclear Science, 2008, 55, 1509-1513.	2.0	25
56	Time-resolved luminescence of nanocrystalline inorganic complex oxides. Journal of Physics: Conference Series, 2007, 93, 012037.	0.4	6
57	Blue luminescence in ZnO single crystals, nanopowders, ceramic. Journal of Physics: Conference Series, 2007, 93, 012036.	0.4	4
58	Flight to Mars and radiation defects in Li2B4O7 and KTiOPO4 crystals. Physica Status Solidi C: Current Topics in Solid State Physics, 2007, 4, 1288-1292.	0.8	2
59	Intrinsic luminescence and energy transfer processes in pure and doped YVO4 crystals. Physica Status Solidi C: Current Topics in Solid State Physics, 2007, 4, 801-804.	0.8	21
60	Transient and near-edge absorption in YVO4 crystals. Physica Status Solidi C: Current Topics in Solid State Physics, 2007, 4, 1155-1158.	0.8	9
61	Luminescence of cerium doped YAG nanopowders. Radiation Measurements, 2007, 42, 679-682.	1.4	38
62	Sol-gel preparation of nanocrystalline CaWO4. Lithuanian Journal of Physics, 2007, 47, 63-68.	0.4	13
63	Intrinsic luminescence in yttrium trifluoride. Journal of Luminescence, 2005, 113, 143-150.	3.1	28
64	Exciton emission and defect formation in yttrium trifluoride. Physica Status Solidi C: Current Topics in Solid State Physics, 2005, 2, 371-374.	0.8	3
65	Stable and transient color centers in Gd3Ga5O12 crystals. Crystal Research and Technology, 2004, 39, 788-795.	1.3	27
66	Experimental and theoretical studies of polaron optical properties in KNbO3 perovskite. Solid State Communications, 2004, 129, 691-696.	1.9	28
67	Transient and stable color centers in pure and Cu-doped LiNbO3. Crystal Research and Technology, 2003, 38, 388-393.	1.3	11
68	The role of Fe and Cu dopants in electron–hole trapping and relaxation process in congruent LiNbO3. Optical Materials, 2003, 22, 257-262.	3.6	14
69	Transient Absorption of Niobium States in Photorefractive Materials. Ferroelectrics, 2003, 296, 75-81.	0.6	2
70	Time-Resolved Spectroscopy in ZnWo4and ZnWO4:Fe. Radiation Effects and Defects in Solids, 2003, 158, 135-139.	1.2	4
71	Relaxation of electronic excitations in strontium titanate. Radiation Effects and Defects in Solids, 2002, 157, 589-593.	1.2	2
72	Transient color centers in GGG crystals. Radiation Effects and Defects in Solids, 2002, 157, 709-713.	1.2	6

VLADIMIR PANKRATOV

#	Article	IF	CITATIONS
73	Iron-related luminescence centers in ZnWO 4 :Fe. Radiation Effects and Defects in Solids, 2002, 157, 1123-1126.	1.2	7
74	Transient absorption of polarons in KNbO3. Nuclear Instruments & Methods in Physics Research B, 2002, 191, 98-101.	1.4	5
75	Pulsed electron beam excited transient absorption in SrTiO3. Nuclear Instruments & Methods in Physics Research B, 2002, 194, 469-473.	1.4	9
76	Transient absorption and luminescence of LiNbO3 and KNbO3. Integrated Ferroelectrics, 2001, 35, 137-149.	0.7	22
77	Time-resolved spectroscopy of ZnWO ₄ . Radiation Effects and Defects in Solids, 2001, 155, 317-321.	1.2	1
78	Luminescence center excited state absorption in tungstates. Journal of Luminescence, 2001, 94-95, 427-432.	3.1	41
79	Luminescence and transient absorption in ZnWO4 and ZnWO4–Fe crystals. Radiation Measurements, 2001, 33, 645-648.	1.4	26
80	Transient absorption spectra and relaxation kinetics in Nb-doped PbWO4 scintillating crystals. Radiation Measurements, 2001, 33, 659-662.	1.4	0
81	Transient Optical Absorption and Luminescence in Calcium Tungstate Crystal. Physica Status Solidi (B): Basic Research, 2001, 225, R9-R11.	1.5	9
82	Relaxation of electronic excitations in LiNbO3crystals. Ferroelectrics, 2001, 257, 281-292.	0.6	6
83	Theoretical and experimental study of primary radiation defects in KNbO3 perovskite crystals. Nuclear Instruments & Methods in Physics Research B, 2000, 166-167, 299-304.	1.4	14
84	The study of time-resolved absorption and luminescence in PbWO4 crystals. Nuclear Instruments & Methods in Physics Research B, 2000, 166-167, 329-333.	1.4	20
85	Induced optical absorption and ITS relaxation in LiNbO ₃ . Radiation Effects and Defects in Solids, 1999, 150, 193-198.	1.2	7
86	The Model for Luminescence Center Excitation in PbWO ₄ . Acta Physica Polonica A, 1999, 95, 971-976.	0.5	0
87	Luminescence of biexcitons in silver halide crystals. Journal of Luminescence, 1998, 76-77, 408-410.	3.1	2
88	The energy transfer to the luminescence centers in PbWO4. Radiation Measurements, 1998, 29, 263-266.	1.4	10
89	Time-Resolved Luminescence Characteristics of Cerium Doped YAG Nanocrystals. Solid State Phenomena, 0, 128, 173-178.	0.3	13