James Inglese

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5904675/publications.pdf

Version: 2024-02-01

		31974	2	29154
138	11,681	53		104
papers	citations	h-index		g-index
146	146	146		13337
all docs	docs citations	times ranked		citing authors

#	Article	IF	CITATIONS
1	Structure–activity relationship of ipglycermide binding to phosphoglycerate mutases. Journal of Biological Chemistry, 2021, 296, 100628.	3.4	2
2	Genome-Edited Coincidence and PMP22-HiBiT Fusion Reporter Cell Lines Enable an Artifact-Suppressive Quantitative High-Throughput Screening Strategy for <i>PMP22</i> Gene-Dosage Disorder Drug Discovery. ACS Pharmacology and Translational Science, 2021, 4, 1422-1436.	4.9	6
3	High-Throughput Screening to Identify Inhibitors of the Type I Interferon–Major Histocompatibility Complex Class I Pathway in Skeletal Muscle. ACS Chemical Biology, 2020, 15, 1974-1986.	3.4	10
4	A Macrocyclic Peptide Library with a Structurally Constrained Cyclopropaneâ€containing Building Block Leads to Thiolâ€independent Inhibitors of Phosphoglycerate Mutase. Chemistry - an Asian Journal, 2020, 15, 2631-2636.	3.3	10
5	A homogeneous SIRPα-CD47 cell-based, ligand-binding assay: Utility for small molecule drug development in immuno-oncology. PLoS ONE, 2020, 15, e0226661.	2.5	19
6	Title is missing!. , 2020, 15, e0226661.		0
7	Title is missing!. , 2020, 15, e0226661.		O
8	Title is missing!. , 2020, 15, e0226661.		0
9	Title is missing!. , 2020, 15, e0226661.		0
10	Inhibition of natriuretic peptide receptor 1 reduces itch in mice. Science Translational Medicine, 2019 , 11 , .	12.4	46
11	Quantitative high-throughput screening assays for the discovery and development of SIRPα-CD47 interaction inhibitors. PLoS ONE, 2019, 14, e0218897.	2.5	28
12	Detecting Secretory Proteins by Acoustic Droplet Ejection in Multiplexed High-Throughput Applications. ACS Chemical Biology, 2019, 14, 497-505.	3.4	9
13	lpomoeassin F Binds Sec61α to Inhibit Protein Translocation. Journal of the American Chemical Society, 2019, 141, 8450-8461.	13.7	58
14	A fission yeast platform for heterologous expression of mammalian adenylyl cyclases and high throughput screening. Cellular Signalling, 2019, 60, 114-121.	3.6	7
15	Genome-Edited Cell Lines for High-Throughput Screening. Methods in Molecular Biology, 2018, 1755, 1-17.	0.9	2
16	Canvass: A Crowd-Sourced, Natural-Product Screening Library for Exploring Biological Space. ACS Central Science, 2018, 4, 1727-1741.	11.3	32
17	ICE1 promotes the link between splicing and nonsense-mediated mRNA decay. ELife, 2018, 7, .	6.0	54
18	Macrocycle peptides delineate locked-open inhibition mechanism for microorganism phosphoglycerate mutases. Nature Communications, 2017, 8, 14932.	12.8	41

#	Article	IF	CITATIONS
19	Use of a Machine Learning-Based High Content Analysis Approach to Identify Photoreceptor Neurite Promoting Molecules. Advances in Experimental Medicine and Biology, 2016, 854, 597-603.	1.6	5
20	Rapid RNA–ligand interaction analysis through high-information content conformational and stability landscapes. Nature Communications, 2015, 6, 8898.	12.8	28
21	Chemogenomic Profiling of Endogenous <i>PARK2</i> Expression Using a Genome-Edited Coincidence Reporter. ACS Chemical Biology, 2015, 10, 1188-1197.	3.4	52
22	Phenotype-driven chemical screening in zebrafish for compounds that inhibit collective cell migration identifies multiple pathways potentially involved in metastatic invasion. DMM Disease Models and Mechanisms, 2015, 8, 565-576.	2.4	47
23	Mitigating risk in academic preclinical drug discovery. Nature Reviews Drug Discovery, 2015, 14, 279-294.	46.4	131
24	Actinoramide A Identified as a Potent Antimalarial from Titration-Based Screening of Marine Natural Product Extracts. Journal of Natural Products, 2015, 78, 2411-2422.	3.0	30
25	Genome Editing-Enabled HTS Assays Expand Drug Target Pathways for Charcot–Marie–Tooth Disease. ACS Chemical Biology, 2014, 9, 2594-2602.	3.4	31
26	The Increasing Urgency for Standards in Basic Biologic Research. Cancer Research, 2014, 74, 4024-4029.	0.9	76
27	Identification of Small Molecule Modulators of Gene Transcription with Anticancer Activity. ACS Chemical Biology, 2014, 9, 2603-2611.	3.4	4
28	Engineering Bacterial Transcription Regulation To Create a Synthetic <i>in Vitro</i> Two-Hybrid System for Protein Interaction Assays. Journal of the American Chemical Society, 2014, 136, 14031-14038.	13.7	16
29	A High Throughput Screening Assay System for the Identification of Small Molecule Inhibitors of gsp. PLoS ONE, 2014, 9, e90766.	2.5	16
30	Identification of Potent and Selective Diphenylpropanamide $ROR\hat{l}^3$ Inhibitors. ACS Medicinal Chemistry Letters, 2013, 4, 79-84.	2.8	56
31	Chemical genomics for studying parasite gene function and interaction. Trends in Parasitology, 2013, 29, 603-611.	3.3	4
32	Profile of the GSK Published Protein Kinase Inhibitor Set Across ATP-Dependent and-Independent Luciferases: Implications for Reporter-Gene Assays. PLoS ONE, 2013, 8, e57888.	2.5	65
33	Innovation in academic chemical screening: filling the gaps in chemical biology. Current Opinion in Chemical Biology, 2013, 17, 329-338.	6.1	19
34	Functional genomic screening identifies dual leucine zipper kinase as a key mediator of retinal ganglion cell death. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 4045-4050.	7.1	239
35	A coincidence reporter-gene system for high-throughput screening. Nature Methods, 2012, 9, 937-937.	19.0	34
36	Truncated Aspidosperma Alkaloid-Like Scaffolds: Unique Structures for the Discovery of New, Bioactive Compounds. Heterocycles, 2012, 84, 135.	0.7	5

#	Article	IF	CITATIONS
37	Firefly Luciferase in Chemical Biology: A Compendium of Inhibitors, Mechanistic Evaluation of Chemotypes, and Suggested Use As a Reporter. Chemistry and Biology, 2012, 19, 1060-1072.	6.0	122
38	A furoxan–amodiaquine hybrid as a potential therapeutic for three parasitic diseases. MedChemComm, 2012, 3, 1505.	3.4	21
39	Identification of Drug Modulators Targeting Gene-Dosage Disease CMT1A. ACS Chemical Biology, 2012, 7, 1205-1213.	3.4	46
40	Pyruvate kinase M2 activators promote tetramer formation and suppress tumorigenesis. Nature Chemical Biology, 2012, 8, 839-847.	8.0	614
41	The synthesis and evaluation of dihydroquinazolin-4-ones and quinazolin-4-ones as thyroid stimulating hormone receptor agonists. MedChemComm, 2011, 2, 1016.	3.4	9
42	Chemical Genomic Profiling for Antimalarial Therapies, Response Signatures, and Molecular Targets. Science, 2011, 333, 724-729.	12.6	130
43	Synthesis and evaluation of quinazolin-4-ones as hypoxia-inducible factor-1α inhibitors. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 5239-5243.	2.2	10
44	Titration-Based Screening for Evaluation of Natural Product Extracts: Identification of an Aspulvinone Family of Luciferase Inhibitors. Chemistry and Biology, 2011, 18, 1442-1452.	6.0	43
45	Selective and Cell-Active Inhibitors of the USP1/ UAF1 Deubiquitinase Complex Reverse Cisplatin Resistance in Non-small Cell Lung Cancer Cells. Chemistry and Biology, 2011, 18, 1390-1400.	6.0	183
46	Biology-Driven Library Design for Probe Discovery. Chemistry and Biology, 2011, 18, 1204-1205.	6.0	2
47	Discovery of new antimalarial chemotypes through chemical methodology and library development. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 6775-6780.	7.1	42
48	A Quantitative High-Throughput Screen Identifies Novel Inhibitors of the Interaction of Thyroid Receptor \hat{l}^2 with a Peptide of Steroid Receptor Coactivator 2. Journal of Biomolecular Screening, 2011, 16, 618-627.	2.6	15
49	Methylsulfonylnitrobenzoates, a New Class of Irreversible Inhibitors of the Interaction of the Thyroid Hormone Receptor and Its Obligate Coactivators That Functionally Antagonizes Thyroid Hormone. Journal of Biological Chemistry, 2011, 286, 11895-11908.	3.4	30
50	Evaluation of Substituted <i>N</i> , <i>N</i> ′-Diarylsulfonamides as Activators of the Tumor Cell Specific M2 Isoform of Pyruvate Kinase. Journal of Medicinal Chemistry, 2010, 53, 1048-1055.	6.4	135
51	Apparent activity in high-throughput screening: origins of compound-dependent assay interference. Current Opinion in Chemical Biology, 2010, 14, 315-324.	6.1	365
52	Illuminating Insights into Firefly Luciferase and Other Bioluminescent Reporters Used in Chemical Biology. Chemistry and Biology, 2010, 17, 646-657.	6.0	264
53	Evaluation of thieno[3,2-b]pyrrole[3,2-d]pyridazinones as activators of the tumor cell specific M2 isoform of pyruvate kinase. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 3387-3393.	2.2	112
54	Assay, Preclinical, and Clinical Brick Walls and Opportunities for System Change Through GRANDRx. Assay and Drug Development Technologies, 2010, 8, 128-134.	1.2	0

#	Article	IF	CITATIONS
55	Molecular basis for the high-affinity binding and stabilization of firefly luciferase by PTC124. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 4878-4883.	7.1	161
56	Identification and Optimization of Inhibitors of Trypanosomal Cysteine Proteases: Cruzain, Rhodesain, and TbCatB. Journal of Medicinal Chemistry, 2010, 53, 52-60.	6.4	103
57	A High-Throughput 1,536-Well Luminescence Assay for Glutathione S-Transferase Activity. Assay and Drug Development Technologies, 2010, 8, 200-211.	1.2	15
58	Quantitative Analyses of Aggregation, Autofluorescence, and Reactivity Artifacts in a Screen for Inhibitors of a Thiol Protease. Journal of Medicinal Chemistry, 2010, 53, 37-51.	6.4	213
59	A strategy to discover inhibitors of Bacillus subtilis surfactin-type phosphopantetheinyl transferase. Molecular BioSystems, 2010, 6, 365-375.	2.9	30
60	Comparison of Bioluminescent Kinase Assays Using Substrate Depletion and Product Formation. Assay and Drug Development Technologies, 2009, 7, 606-614.	1.2	41
61	Identification of compounds that potentiate CREB signaling as possible enhancers of long-term memory. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 2412-2417.	7.1	52
62	The Pilot Phase of the NIH Chemical Genomics Center. Current Topics in Medicinal Chemistry, 2009, 9, 1181-1193.	2.1	28
63	A Dual-Fluorescence High-Throughput Cell Line System for Probing Multidrug Resistance. Assay and Drug Development Technologies, 2009, 7, 233-249.	1.2	53
64	An AlphaScreenâ,,¢-Based High-Throughput Screen to Identify Inhibitors of Hsp90-Cochaperone Interaction. Journal of Biomolecular Screening, 2009, 14, 273-281.	2.6	47
65	Weighted Feature Significance: A Simple, Interpretable Model of Compound Toxicity Based on the Statistical Enrichment of Structural Features. Toxicological Sciences, 2009, 112, 385-393.	3.1	33
66	Monitoring Compound Integrity With Cytochrome P450 Assays and qHTS. Journal of Biomolecular Screening, 2009, 14, 538-546.	2.6	24
67	Identification of Chemical Compounds that Induce HIF- \hat{l}_{\pm} Activity. Toxicological Sciences, 2009, 112, 153-163.	3.1	55
68	Small-molecule agonists for the thyrotropin receptor stimulate thyroid function in human thyrocytes and mice. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 12471-12476.	7.1	102
69	Mechanism of PTC124 activity in cell-based luciferase assays of nonsense codon suppression. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 3585-3590.	7.1	182
70	Identification of phosphotyrosine mimetic inhibitors of human tyrosyl-DNA phosphodiesterase I by a novel AlphaScreen high-throughput assay. Molecular Cancer Therapeutics, 2009, 8, 240-248.	4.1	73
71	Comprehensive characterization of cytochrome P450 isozyme selectivity across chemical libraries. Nature Biotechnology, 2009, 27, 1050-1055.	17.5	154
72	Genetic mapping of targets mediating differential chemical phenotypes in Plasmodium falciparum. Nature Chemical Biology, 2009, 5, 765-771.	8.0	59

#	Article	IF	Citations
73	Quantitative high-throughput screening identifies inhibitors of anthrax-induced cell death. Bioorganic and Medicinal Chemistry, 2009, 17, 5139-5145.	3.0	33
74	Exploration and optimization of substituted triazolothiadiazines and triazolopyridazines as PDE4 inhibitors. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 3686-3692.	2.2	44
75	Evaluation of substituted 6-arylquinazolin-4-amines as potent and selective inhibitors of cdc2-like kinases (Clk). Bioorganic and Medicinal Chemistry Letters, 2009, 19, 6700-6705.	2.2	69
76	A Basis for Reduced Chemical Library Inhibition of Firefly Luciferase Obtained from Directed Evolution. Journal of Medicinal Chemistry, 2009, 52, 1450-1458.	6.4	70
77	Structure Mechanism Insights and the Role of Nitric Oxide Donation Guide the Development of Oxadiazole-2-Oxides as Therapeutic Agents against Schistosomiasis. Journal of Medicinal Chemistry, 2009, 52, 6474-6483.	6.4	74
78	A quantitative high-throughput screen for modulators of IL-6 signaling: a model for interrogating biological networks using chemical libraries. Molecular BioSystems, 2009, 5, 1039.	2.9	14
79	Identification of Pregnane X Receptor Ligands Using Time-Resolved Fluorescence Resonance Energy Transfer and Quantitative High-Throughput Screening. Assay and Drug Development Technologies, 2009, 7, 143-169.	1.2	55
80	A Cell-Based \hat{l}^2 -Lactamase Reporter Gene Assay for the CREB Signaling Pathway. Current Chemical Genomics, 2009, 3, 7-12.	2.0	7
81	Identification of a potent new chemotype for the selective inhibition of PDE4. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 1297-1303.	2.2	22
82	Dual-fluorophore quantitative high-throughput screen for inhibitors of BRCT–phosphoprotein interaction. Analytical Biochemistry, 2008, 375, 60-70.	2.4	47
83	A quantitative high-throughput screen identifies potential epigenetic modulators of gene expression. Analytical Biochemistry, 2008, 375, 237-248.	2.4	35
84	Identification of N-(quinolin-8-yl)benzenesulfonamides as agents capable of down-regulating NFκB activity within two separate high-throughput screens of NFκB activation. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 329-335.	2.2	20
85	Identification of oxadiazoles as new drug leads for the control of schistosomiasis. Nature Medicine, 2008, 14, 407-412.	30.7	250
86	A Robotic Platform for Quantitative High-Throughput Screening. Assay and Drug Development Technologies, 2008, 6, 637-657.	1.2	126
87	A bioluminescent cytotoxicity assay for assessment of membrane integrity using a proteolytic biomarker. Toxicology in Vitro, 2008, 22, 1099-1106.	2.4	86
88	Characterization of Diversity in Toxicity Mechanism Using in Vitro Cytotoxicity Assays in Quantitative High Throughput Screening. Chemical Research in Toxicology, 2008, 21, 659-667.	3.3	70
89	Fluorescence Spectroscopic Profiling of Compound Libraries. Journal of Medicinal Chemistry, 2008, 51, 2363-2371.	6.4	247
90	Characterization of Chemical Libraries for Luciferase Inhibitory Activity. Journal of Medicinal Chemistry, 2008, 51, 2372-2386.	6.4	180

#	Article	IF	CITATIONS
91	A Specific Mechanism for Nonspecific Activation in Reporter-Gene Assays. ACS Chemical Biology, 2008, 3, 463-470.	3.4	109
92	Comprehensive Mechanistic Analysis of Hits from High-Throughput and Docking Screens against \hat{l}^2 -Lactamase. Journal of Medicinal Chemistry, 2008, 51, 2502-2511.	6.4	169
93	Compound Management for Quantitative High-Throughput Screening. Journal of the Association for Laboratory Automation, 2008, 13, 79-89.	2.8	72
94	A Fluorescence-Based Thiol Quantification Assay for Ultra-High-Throughput Screening for Inhibitors of Coenzyme A Production. Assay and Drug Development Technologies, 2008, 6, 361-374.	1.2	38
95	A 1,536-Well-Based Kinetic HTS Assay for Inhibitors of <i>Schistosoma mansoni < i>Thioredoxin Glutathione Reductase. Assay and Drug Development Technologies, 2008, 6, 551-555.</i>	1.2	23
96	A High Throughput Fluorescence Polarization Assay for Inhibitors of the GoLoco Motif/G-alpha Interaction. Combinatorial Chemistry and High Throughput Screening, 2008, 11, 396-409.	1.1	28
97	A Miniaturized Glucocorticoid Receptor Translocation Assay Using Enzymatic Fragment Complementation Evaluated with qHTS. Combinatorial Chemistry and High Throughput Screening, 2008, 11, 545-559.	1.1	15
98	Optimization and Validation of Two Miniaturized Glucocerebrosidase Enzyme Assays for High Throughput Screening. Combinatorial Chemistry and High Throughput Screening, 2008, 11, 817-824.	1.1	35
99	Quantitative High-Throughput Screen Identifies Inhibitors of the Schistosoma mansoni Redox Cascade. PLoS Neglected Tropical Diseases, 2008, 2, e127.	3.0	101
100	Compound Cytotoxicity Profiling Using Quantitative High-Throughput Screening. Environmental Health Perspectives, 2008, 116, 284-291.	6.0	232
101	Comparison on Functional Assays for Gq-Coupled GPCRs by Measuring Inositol Monophospate-1 and Intracellular Calcium in 1536-Well Plate Format. Current Chemical Genomics, 2008, 1, 70-78.	2.0	32
102	Evaluation of Micro-Parallel Liquid Chromatography as a Method for HTS-Coupled Actives Verification. Assay and Drug Development Technologies, 2007, 5, 815-824.	1.2	4
103	Three classes of glucocerebrosidase inhibitors identified by quantitative high-throughput screening are chaperone leads for Gaucher disease. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 13192-13197.	7.1	139
104	A High-Throughput Screen for Aggregation-Based Inhibition in a Large Compound Library. Journal of Medicinal Chemistry, 2007, 50, 2385-2390.	6.4	332
105	A Cell-Based Assay for IκBα Stabilization Using A Two-Color Dual Luciferase-Based Sensor. Assay and Drug Development Technologies, 2007, 5, 85-104.	1.2	31
106	N4-Phenyl modifications of N2-(2-hydroxyl)ethyl-6-(pyrrolidin-1-yl)-1,3,5-triazine-2,4-diamines enhance glucocerebrosidase inhibition by small molecules with potential as chemical chaperones for Gaucher disease. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 5783-5789.	2.2	30
107	High-throughput screening assays for the identification of chemical probes. Nature Chemical Biology, 2007, 3, 466-479.	8.0	555
108	Reporting data from high-throughput screening of small-molecule libraries. Nature Chemical Biology, 2007, 3, 438-441.	8.0	97

#	Article	IF	Citations
109	Differentiating Alzheimer disease-associated aggregates with small molecules. Neurobiology of Disease, 2007, 28, 251-260.	4.4	71
110	Fluorescent Proteinâ€Based Cellular Assays Analyzed by Laserâ€Scanning Microplate Cytometry in 1536â€Well Plate Format. Methods in Enzymology, 2006, 414, 566-589.	1.0	29
111	Quantitative high-throughput screening: A titration-based approach that efficiently identifies biological activities in large chemical libraries. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 11473-11478.	7.1	733
112	Directed evolution of PDZ variants to generate high-affinity detection reagents. Protein Engineering, Design and Selection, 2005, 18, 165-173.	2.1	23
113	A 1,536-Well cAMP Assay for Gs- and Gi-Coupled Receptors Using Enzyme Fragmentation Complementation. Assay and Drug Development Technologies, 2004, 2, 39-49.	1.2	30
114	Miniaturization of Whole Live Cell-Based GPCR Assays Using Microdispensing and Detection Systems. Journal of Biomolecular Screening, 2004, 9, 186-195.	2.6	34
115	A cell-based β-lactamase reporter gene assay for the identification of inhibitors of hepatitis C virus replication. Analytical Biochemistry, 2004, 334, 344-355.	2.4	58
116	Development of an intact cell reporter gene \hat{l}^2 -lactamase assay for G protein-coupled receptors for high-throughput screening. Analytical Biochemistry, 2003, 314, 16-29.	2.4	82
117	Identification of metabotropic glutamate receptor antagonists using an automated high-throughput screening system. Analytical Biochemistry, 2003, 313, 246-254.	2.4	34
118	Miniaturizable homogenous time-resolved fluorescence assay for carboxypeptidase B activity. Analytical Biochemistry, 2003, 317, 94-98.	2.4	20
119	A PDZ domain-based assay for measuring HIV protease activity: Assay design considerations. Protein Science, 2003, 12, 458-467.	7.6	7
120	A Fully Automated [35S]GTPÎ ³ S Scintillation Proximity Assay for the High-Throughput Screening of Gi-Linked G Protein-Coupled Receptors. Assay and Drug Development Technologies, 2003, 1, 261-273.	1.2	36
121	A \hat{l}^2 -Lactamase-Dependent Gal4-Estrogen Receptor \hat{l}^2 Transactivation Assay for the Ultra-High Throughput Screening of Estrogen Receptor \hat{l}^2 Agonists in a 3,456-Well Format. Assay and Drug Development Technologies, 2003, 1, 789-800.	1.2	25
122	Expanding the HTS paradigm. Drug Discovery Today, 2002, 7, S105-S106.	6.4	7
123	A PDZ Domain-Based Detection System for Enzymatic Assays. Analytical Biochemistry, 2002, 301, 207-216.	2.4	12
124	Miniaturization of a Hepatitis C Virus RNA Polymerase Assay Using a Ⱂ102°C Cooled CCD Camera-Based Imaging System. Analytical Biochemistry, 2001, 290, 214-220.	2.4	26
125	Phosducin, Potential Role in Modulation of Olfactory Signaling. Journal of Biological Chemistry, 1997, 272, 4606-4612.	3.4	41
126	G Protein–Coupled Receptor Kinase Mediates Desensitization of Norepinephrine-Induced Ca2+ Channel Inhibition. Neuron, 1996, 16, 579-585.	8.1	58

#	Article	IF	CITATIONS
127	Characterization of the G Protein-coupled Receptor Kinase GRK4. Journal of Biological Chemistry, 1996, 271, 6403-6410.	3.4	172
128	[13] Prenylation-dependent targeting of g-protein-coupled receptor kinases. Methods in Enzymology, 1995, 250, 149-158.	1.0	0
129	Protein kinases that phosphorylate activated G proteinâ€coupled receptors. FASEB Journal, 1995, 9, 175-182.	0.5	494
130	Ca2+-dependent Interaction of Recoverin with Rhodopsin Kinase. Journal of Biological Chemistry, 1995, 270, 18060-18066.	3.4	267
131	Heterotrimeric G Proteins Interact with the Small GTPase ARF. Journal of Biological Chemistry, 1995, 270, 24564-24571.	3.4	54
132	Rhodopsin Kinase Autophosphorylation. Journal of Biological Chemistry, 1995, 270, 15294-15298.	3.4	55
133	Cardiac Muscarinic Potassium Channel Activity Is Attenuated by Inhibitors of G $\hat{I}^2\hat{I}^3$. Circulation Research, 1995, 76, 832-838.	4.5	41
134	Activation of the cloned muscarinic potassium channel by G protein $\hat{l}^2\hat{l}^3$ subunits. Nature, 1994, 370, 143-146.	27.8	484
135	Crystal structure of glycinamide ribonucleotide transformylase from Escherichia coli at 3·0 à resolution. Journal of Molecular Biology, 1992, 227, 283-292.	4.2	65
136	Isoprenylation in regulation of signal transduction by G-protein-coupled receptor kinases. Nature, 1992, 359, 147-150.	27.8	310
137	Multisubstrate adduct inhibitors of glycinamide ribonucleotide transformylase: Synthetic and enzyme-assembled Tetrahedron, 1991, 47, 2351-2364.	1.9	106
138	A multisubstrate adduct inhibitor of a purine biosynthetic enzyme with a picomolar dissociation constant. Journal of Medicinal Chemistry, 1989, 32, 937-940.	6.4	53