
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5904612/publications.pdf Version: 2024-02-01

FDIR HLADSEN

#	Article	IF	CITATIONS
1	Carbon-enhanced inductively coupled plasma mass spectrometric detection of arsenic and selenium and its application to arsenic speciation. Journal of Analytical Atomic Spectrometry, 1994, 9, 1099-1105.	3.0	302
2	Current—voltage curve of sodium channels and concentration dependence of sodium permeability in frog skin. Journal of Physiology, 1977, 267, 137-166.	2.9	298
3	Osmoregulation and Excretion. , 2014, 4, 405-573.		163
4	Properties of a conductive cellular chloride pathway in the skin of the toad (<i>Bufo bufo</i>). Acta Physiologica Scandinavica, 1978, 102, 1-21.	2.2	133
5	Separation of seven arsenic compounds by high-performance liquid chromatography with on-line detection by hydrogen–argon flame atomic absorption spectrometry and inductively coupled plasma mass spectrometry. Journal of Analytical Atomic Spectrometry, 1992, 7, 629-634.	3.0	120
6	TMEM16F (Anoctamin 6), an anion channel of delayed Ca2+ activation. Journal of General Physiology, 2013, 141, 585-600.	1.9	97
7	ANO1 (TMEM16A) in pancreatic ductal adenocarcinoma (PDAC). Pflugers Archiv European Journal of Physiology, 2015, 467, 1495-1508.	2.8	93
8	Speciation and health risk considerations of arsenic in the edible mushroom Laccaria amethystina collected from contaminated and uncontaminated locations. Applied Organometallic Chemistry, 1998, 12, 285-291.	3.5	84
9	Ion transport by mitochondria-rich cells in toad skin. Journal of Membrane Biology, 1987, 99, 25-40.	2.1	82
10	Method optimization and quality assurance in speciation analysis using high performance liquid chromatography with detection by inductively coupled plasma mass spectrometry. Spectrochimica Acta, Part B: Atomic Spectroscopy, 1998, 53, 253-265.	2.9	76
11	Speciation of dimethylarsinyl-riboside derivatives (arsenosugars) in marine reference materials by HPLC-ICP-MS. Fresenius' Journal of Analytical Chemistry, 1995, 352, 582-588.	1.5	75
12	Membrane potentials and intracellular Clâ^ activity of toad skin epithelium in relation to activation and deactivation of the transepithelial Clâ^ conductance. Journal of Membrane Biology, 1986, 94, 173-190.	2.1	70
13	Pathways for Chloride and Sodium Transport across Toad Skin. Acta Physiologica Scandinavica, 1976, 97, 31-47.	2.2	54
14	Anoctamin 6 differs from VRAC and VSOAC but is involved in apoptosis and supports volume regulation in the presence of Ca2+. Pflugers Archiv European Journal of Physiology, 2014, 466, 1899-1910.	2.8	52
15	Chloride channels in toad skin. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 1982, 299, 413-434.	2.3	49
16	Role of proton pump of mitochondriaâ€rich cells for active transport of chloride ions in toad skin epithelium Journal of Physiology, 1992, 450, 203-216.	2.9	49
17	Laser Doppler flowmetry is valid for measurement of cerebral blood flow autoregulation lower limit in rats. Experimental Physiology, 2005, 90, 349-355.	2.0	49
18	Analysis of the sodium recirculation theory of soluteâ€coupled water transport in small intestine. Journal of Physiology, 2002, 542, 33-50.	2.9	46

#	Article	IF	CITATIONS
19	Morphology of the kidney in larvae ofBufo viridis (Amphibia, Anura, Bufonidae). Journal of Morphology, 2000, 245, 177-195.	1.2	43
20	Concentration dependence of halide fluxes and selectivity of the anion pathway in toad skin. Acta Physiologica Scandinavica, 1986, 128, 289-304.	2.2	38
21	Sodium Recirculation and Isotonic Transport in Toad Small Intestine. Journal of Membrane Biology, 1999, 168, 241-251.	2.1	37
22	Relation between chloride exchange diffusion and a conductive chloride pathway across the isolated skin of the toad (<i>Bufo bufo</i>). Acta Physiologica Scandinavica, 1978, 102, 22-34.	2.2	36
23	Electrothermal atomic absorption spectrometry of inorganic and organic arsenic species using conventional and fast furnace programmes. Journal of Analytical Atomic Spectrometry, 1991, 6, 375.	3.0	36
24	Ion Secretion and Isotonic Transport in Frog Skin Glands. Journal of Membrane Biology, 1996, 152, 101-110.	2.1	35
25	A Mathematical Model of Solute Coupled Water Transport in Toad Intestine Incorporating Recirculation of the Actively Transported Solute. Journal of General Physiology, 2000, 116, 101-124.	1.9	34
26	Proton Pump Activity of Mitochondria-rich Cells. Journal of General Physiology, 1997, 109, 73-91.	1.9	33
27	Maxi K+ channels co-localised with CFTR in the apical membrane of an exocrine gland acinus: possible involvement in secretion. Pflugers Archiv European Journal of Physiology, 2001, 442, 1-11.	2.8	33
28	The lateral intercellular space as osmotic coupling compartment in isotonic transport. Acta Physiologica, 2009, 195, 171-186.	3.8	33
29	A mathematical model of amphibian skin epithelium with two types of transporting cellular units. Pflugers Archiv European Journal of Physiology, 1985, 405, S50-S58.	2.8	32
30	Morphology of the Nephron in the Mesonephros of <i>Bufo bufo</i> (Amphibia, Anura, Bufonidae). Acta Zoologica, 1998, 79, 31-50.	0.8	32
31	Absorption and retention of selenium from shrimps in man. Journal of Trace Elements in Medicine and Biology, 2001, 14, 198-204.	3.0	31
32	Cyclic AMPâ€and betaâ€agonistâ€activated chloride conductance of a toad skin epithelium Journal of Physiology, 1992, 449, 641-653.	2.9	30
33	Hans H. Ussing—scientific work: contemporary significance and perspectives. Biochimica Et Biophysica Acta - Biomembranes, 2002, 1566, 2-15.	2.6	30
34	Sodium Transport and D.C. Resistance in the Isolated Toad Skin in Relation to Shedding of the Stratum Corneum. Acta Physiologica Scandinavica, 1970, 79, 453-461.	2.2	29
35	Heterogeneity of chloride channels in the apical membrane of isolated mitochondria-rich cells from toad skin Journal of General Physiology, 1996, 108, 421-433.	1.9	29
36	Role of lateral intercellular space and sodium recirculation for isotonic transport in leaky epithelia. , 2000, 141, 153-212.		29

#	Article	IF	CITATIONS
37	Na+ Recirculation and Isosmotic Transport. Journal of Membrane Biology, 2006, 212, 1-15.	2.1	28
38	Chloride currents of single mitochondria-rich cells of toad skin epithelium Journal of Physiology, 1994, 478, 7-15.	2.9	27
39	Proton pump-driven cutaneous chloride uptake in anuran amphibia. Biochimica Et Biophysica Acta - Biomembranes, 2003, 1618, 120-132.	2.6	25
40	Application of the Na+ recirculation theory to ion coupled water transport in low- and high resistance osmoregulatory epithelia. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2007, 148, 101-116.	1.8	25
41	Effect of aldosterone and oxytocin on the active sodium transport across the isolated toad skin in relation to loosening of Stratum corneum. General and Comparative Endocrinology, 1971, 17, 543-553.	1.8	24
42	Role of cutaneous surface fluid in frog osmoregulation. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2013, 165, 365-370.	1.8	23
43	Patch Clamp on the Luminal Membrane of Exocrine Gland Acini from Frog Skin (Rana esculenta) Reveals the Presence of Cystic Fibrosis Transmembrane Conductance Regulator–like Clâ^ Channels Activated by Cyclic AMP. Journal of General Physiology, 1998, 112, 19-31.	1.9	22
44	The Relative Contributions of Sodium and Chloride Ions to the Conductance of Toad Skin in Relation to Shedding of the Stratum Corneum. Acta Physiologica Scandinavica, 1971, 81, 254-263.	2.2	21
45	Cation transport by sweat ducts in primary culture. Ionic mechanism of cholinergically evoked current oscillations Journal of Physiology, 1990, 424, 109-131.	2.9	21
46	Mitochondria-rich cells as experimental model in studies of epithelial chloride channels. Biochimica Et Biophysica Acta - Biomembranes, 2002, 1566, 28-43.	2.6	20
47	Characteristics of aldosterone stimulated transport in isolated skin of the toad, Bufo bufo (L.). The Journal of Steroid Biochemistry, 1972, 3, 111-120.	1.1	19
48	Endogenous chloride channels of insect sf9 cells. Evidence for coordinated activity of small elementary channel units Journal of General Physiology, 1996, 107, 695-714.	1.9	19
49	Proton pump activity is required for active uptake of chloride in isolated amphibian skin exposed to freshwater. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2002, 172, 503-511.	1.5	18
50	Clusters of Clâ^' channels in CFTR-expressing Sf9 cells switch spontaneously between slow and fast gating modes. Pflugers Archiv European Journal of Physiology, 1996, 432, 528-537.	2.8	17
51	Beta-adrenergic activation of solute coupled water uptake by toad skin epithelium results in near-isosmotic transport. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2007, 148, 64-71.	1.8	17
52	Dual skin functions in amphibian osmoregulation. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2021, 253, 110869.	1.8	17
53	Role of mitochondria-rich cells in epithelial chloride uptake. Experimental Physiology, 1996, 81, 525-534.	2.0	16
54	Reconciling the Krogh and Ussing interpretations of epithelial chloride transport – presenting a novel hypothesis for the physiological significance of the passive cellular chloride uptake. Acta Physiologica, 2011, 202, 435-464.	3.8	16

#	Article	IF	CITATIONS
55	Indacrinone (MKâ€196) ―a specific inhibitor of the voltageâ€dependent Cl―permeability in toad skin. Acta Physiologica Scandinavica, 1986, 127, 145-153.	2.2	15
56	Electrophysiological properties of neurones in the internal and external submucous plexuses of newborn pig small intestine Journal of Physiology, 1997, 498, 773-785.	2.9	15
57	Membrane potential plays a dual role for chloride transport across toad skin. Biochimica Et Biophysica Acta - Biomembranes, 1983, 728, 455-459.	2.6	14
58	Role of Mitochondria-rich Cells for Passive Chloride Transport, with a Discussion of Ussing's Contribution to Our Understanding of Shunt Pathways in Epithelia. Journal of Membrane Biology, 2001, 184, 247-254.	2.1	14
59	Lymph osmolality and rehydration from NaCl solutions by toads, Bufo marinus. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2001, 171, 283-292.	1.5	14
60	August Krogh's contribution to the rise of physiology during the first half the 20th century. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2021, 256, 110931.	1.8	13
61	Expression of cystic fibrosis transmembrane conductance regulator in the skin of the toad, Bufo bufo and possible role for Clâî transport across the heterocellular epithelium. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2001, 130, 539-550.	1.8	12
62	CHLORIDE CURRENT RECTIFICATION IN TOAD SKIN EPITHELIUM. , 1982, , 333-364.		11
63	The in vivo effect of adrenomedullin on rat dural and pial arteries. European Journal of Pharmacology, 2006, 538, 101-107.	3.5	10
64	Identification of Anion-selective Channels in the Basolateral Membrane of Mitochondria-rich Epithelial Cells. Journal of Membrane Biology, 1997, 157, 255-269.	2.1	9
65	Hans Henriksen Ussing. 30 December 1911 — 22 December 2000. Biographical Memoirs of Fellows of the Royal Society, 2009, 55, 305-335.	0.1	9
66	K+ transport in the mesonephric collecting duct system of the toadBufo bufo. Journal of Experimental Biology, 2002, 205, 897-904.	1.7	9
67	β-Adrenergic receptors couple to CFTR chloride channels of intercalated mitochondria-rich cells in the heterocellular toad skin epithelium. Biochimica Et Biophysica Acta - Biomembranes, 2003, 1618, 140-152.	2.6	8
68	Sulfate transport in toad skin: Evidence for mitochondria-rich cell pathways in common with halide ions. Comparative Biochemistry and Physiology A, Comparative Physiology, 1988, 90, 709-714.	0.6	7
69	Chloride and potassium conductances of cultured human sweat ducts. Pflugers Archiv European Journal of Physiology, 1992, 422, 151-158.	2.8	7
70	Behavioral and Neural Responses of Toads to Salt Solutions Correlate with Basolateral Membrane Potential of Epidermal Cells of the Skin. Chemical Senses, 2007, 32, 765-773.	2.0	7
71	K(+) transport in the mesonephric collecting duct system of the toad Bufo bufo: microelectrode recordings from isolated and perfused tubules. Journal of Experimental Biology, 2002, 205, 897-904.	1.7	7
72	Membrane potential and conductance of frog skin gland acinar cells in resting conditions and during stimulation with agonists of macroscopic secretion. Pflugers Archiv European Journal of Physiology, 1999, 439, 101-112.	2.8	6

#	Article	IF	CITATIONS
73	Ion transport mechanisms in the mesonephric collecting duct system of the toad Bufo bufo: microelectrode recordings from isolated and perfused tubules. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2004, 137, 585-595.	1.8	6
74	Stationary and Nonstationary Ion and Water Flux Interactions in Kidney Proximal Tubule: Mathematical Analysis of Isosmotic Transport by a Minimalistic Model. Reviews of Physiology, Biochemistry and Pharmacology, 2019, 177, 101-147.	1.6	5
75	Effects of Cerebrospinal Fluid Acidity on Cerebral Blood Flow and Autoregulation in Rats. Journal of Neurosurgical Anesthesiology, 2003, 15, 110-118.	1.2	4
76	Advanced computer control of electrophysiological experimentation. Journal of Neuroscience Methods, 1996, 65, 19-26.	2.5	3
77	Basolateral Cl - channels in the larval bullfrog skin epithelium. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2002, 172, 577-586.	1.5	3
78	Homage to August Krogh celebrating the 90th anniversary of his Nobel prize in Physiology or Medicine. Acta Physiologica, 2011, 202, 211-212.	3.8	3
79	Volume Regulation in Epithelia. Physiology in Health and Disease, 2020, , 395-460.	0.3	3
80	Volume Regulation in Epithelia. , 2016, , 131-185.		2
81	Ion and Water Absorption by the Kidney Proximal Tubule: Computational Analysis of Isosmotic Transport. Function, 2020, 1, zqaa014.	2.3	1
82	Molecular physiology of absorbtive and secretory functions of amphibian skin. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 1999, 124, S145.	1.8	0
83	Osmotic pressure of the cutaneous surface fluid of Rana esculenta. FASEB Journal, 2012, 26, 1069.1.	0.5	0
84	Clâ^' and K+ channels in human pancreatic ductal adenocarcinoma (PDAC) cells. FASEB Journal, 2013, 27,	0.5	0