Donald P Mcdonnell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5904162/publications.pdf

Version: 2024-02-01

126 12,897
papers citations h-

63 109
h-index g-index

135 135 all docs citations

135 times ranked 14460 citing authors

#	Article	IF	Citations
1	Estrogen Receptor Signaling in the Immune System. Endocrine Reviews, 2023, 44, 117-141.	8.9	38
2	A New Chemotype of Chemically Tractable Nonsteroidal Estrogens Based on a Thieno[2,3- <i>d</i>) pyrimidine Core. ACS Medicinal Chemistry Letters, 2022, 13, 1151-1158.	1.3	1
3	Next-Generation Endocrine Therapies for Breast Cancer. Journal of Clinical Oncology, 2021, 39, 1383-1388.	0.8	19
4	Current and emerging estrogen receptor-targeted therapies for the treatment of breast cancer. Essays in Biochemistry, 2021, 65, 985-1001.	2.1	10
5	Dysregulated cholesterol homeostasis results in resistance to ferroptosis increasing tumorigenicity and metastasis in cancer. Nature Communications, 2021, 12, 5103.	5.8	111
6	Mechanistic Investigation of Site-specific DNA Methylating Agents Targeting Breast Cancer Cells. Journal of Medicinal Chemistry, 2021, 64, 12651-12669.	2.9	0
7	Inhibition of estrogen signaling in myeloid cells increases tumor immunity in melanoma. Journal of Clinical Investigation, 2021, 131, .	3.9	40
8	Pharmacokinetic and pharmacodynamic analysis of fulvestrant in preclinical models of breast cancer to assess the importance of its estrogen receptor-α degrader activity in antitumor efficacy. Breast Cancer Research and Treatment, 2020, 179, 67-77.	1.1	30
9	The Dysregulated Pharmacology of Clinically Relevant <i>ESR1</i> Mutants is Normalized by Ligand-activated WT Receptor. Molecular Cancer Therapeutics, 2020, 19, 1395-1405.	1.9	26
10	27-Hydroxycholesterol, an Endogenous SERM, and Risk of Fracture in Postmenopausal Women: A Nested Case-Cohort Study in the Women's Health Initiative. Journal of Bone and Mineral Research, 2019, 34, 59-66.	3.1	12
11	The Lineage Determining Factor GRHL2 Collaborates with FOXA1 to Establish a Targetable Pathway in Endocrine Therapy-Resistant Breast Cancer. Cell Reports, 2019, 29, 889-903.e10.	2.9	40
12	The Signaling Pathways Project, an integrated †omics knowledgebase for mammalian cellular signaling pathways. Scientific Data, 2019, 6, 252.	2.4	82
13	Targeting mutant estrogen receptors. ELife, 2019, 8, .	2.8	6
14	Inhibition of ERRα Prevents Mitochondrial Pyruvate Uptake Exposing NADPH-Generating Pathways as Targetable Vulnerabilities in Breast Cancer. Cell Reports, 2019, 27, 3587-3601.e4.	2.9	29
15	Decoding the Inversion Symmetry Underlying Transcription Factor DNA-Binding Specificity and Functionality in the Genome. IScience, 2019, 15, 552-591.	1.9	2
16	CaMKK2 in myeloid cells is a key regulator of the immune-suppressive microenvironment in breast cancer. Nature Communications, 2019, 10, 2450.	5.8	72
17	Constitutively active ESR1 mutations in gynecologic malignancies and clinical response to estrogen-receptor directed therapies. Gynecologic Oncology, 2019, 154, 199-206.	0.6	23
18	HOXB13 interaction with MEIS1 modifies proliferation and gene expression in prostate cancer. Prostate, 2019, 79, 414-424.	1.2	39

#	Article	IF	CITATIONS
19	MON-218 Inflammatory Role of Sex Steroids in Hidradenitis Suppurativa: An Androgenic Phenotype. Journal of the Endocrine Society, 2019, 3, .	0.1	O
20	Defining the molecular pharmacology of disease relevant estrogen receptor mutations for effective therapeutic targeting in breast cancer. FASEB Journal, 2019, 33, 815.4.	0.2	0
21	Neomorphic ERα Mutations Drive Progression in Breast Cancer and Present a Challenge for New Drug Discovery. Cancer Cell, 2018, 33, 153-155.	7.7	4
22	Dysregulation of mitochondrial dynamics proteins are a targetable feature of human tumors. Nature Communications, 2018, 9, 1677.	5.8	96
23	Discovery of LSZ102, a Potent, Orally Bioavailable Selective Estrogen Receptor Degrader (SERD) for the Treatment of Estrogen Receptor Positive Breast Cancer. Journal of Medicinal Chemistry, 2018, 61, 2837-2864.	2.9	103
24	Validation of histone deacetylase 3 as a therapeutic target in castrationâ€resistant prostate cancer. Prostate, 2018, 78, 266-277.	1.2	28
25	Thyroid hormone receptor and ERRÎ \pm coordinately regulate mitochondrial fission, mitophagy, biogenesis, and function. Science Signaling, 2018, 11, .	1.6	80
26	Androgen receptor degradation by the proteolysis-targeting chimera ARCC-4 outperforms enzalutamide in cellular models of prostate cancer drug resistance. Communications Biology, 2018, 1, 100.	2.0	249
27	CYP27A1 Loss Dysregulates Cholesterol Homeostasis in Prostate Cancer. Cancer Research, 2017, 77, 1662-1673.	0.4	83
28	CDK4/6 Therapeutic Intervention and Viable Alternative to Taxanes in CRPC. Molecular Cancer Research, 2017, 15, 660-669.	1.5	22
29	MMTV-PyMT and Derived Met-1 Mouse Mammary Tumor Cells as Models for Studying the Role of the Androgen Receptor in Triple-Negative Breast Cancer Progression. Hormones and Cancer, 2017, 8, 69-77.	4.9	45
30	Impact of 27-hydroxylase (CYP27A1) and 27-hydroxycholesterol in breast cancer. Endocrine-Related Cancer, 2017, 24, 339-349.	1.6	72
31	Distinct Receptor Tyrosine Kinase Subsets Mediate Anti-HER2 Drug Resistance in Breast Cancer. Journal of Biological Chemistry, 2017, 292, 748-759.	1.6	28
32	Discovery of an Acrylic Acid Based Tetrahydroisoquinoline as an Orally Bioavailable Selective Estrogen Receptor Degrader for ERα+ Breast Cancer. Journal of Medicinal Chemistry, 2017, 60, 2790-2818.	2.9	36
33	The cholesterol metabolite 27 hydroxycholesterol facilitates breast cancer metastasis through its actions on immune cells. Nature Communications, 2017, 8, 864.	5.8	261
34	A Predictive Model for Selective Targeting of the Warburg Effect through GAPDH Inhibition with a Natural Product. Cell Metabolism, 2017, 26, 648-659.e8.	7.2	154
35	DNA Sequence Constraints Define Functionally Active Steroid Nuclear Receptor Binding Sites in Chromatin. Endocrinology, 2017, 158, 3212-3234.	1.4	17
36	Androgen receptor antagonism drives cytochrome P450 17A1 inhibitor efficacy in prostate cancer. Journal of Clinical Investigation, 2017, 127, 2326-2338.	3.9	40

#	Article	IF	Citations
37	<i>PIK3CA</i> mutations enable targeting of a breast tumor dependency through mTOR-mediated MCL-1 translation. Science Translational Medicine, 2016, 8, 369ra175.	5.8	49
38	ERRα-Regulated Lactate Metabolism Contributes to Resistance to Targeted Therapies in Breast Cancer. Cell Reports, 2016, 15, 323-335.	2.9	113
39	Inhibiting androgen receptor nuclear entry in castration-resistant prostate cancer. Nature Chemical Biology, 2016, 12, 795-801.	3.9	15
40	Chemotherapy enriches for an invasive triple-negative breast tumor cell subpopulation expressing a precursor form of N-cadherin on the cell surface. Oncotarget, 2016, 7, 84030-84042.	0.8	17
41	MiR-148a functions to suppress metastasis and serves as a prognostic indicator in triple-negative breast cancer. Oncotarget, 2016, 7, 20381-20394.	0.8	52
42	Smallâ€Moleculeâ€Mediated Degradation of the Androgen Receptor through Hydrophobic Tagging. Angewandte Chemie - International Edition, 2015, 54, 9659-9662.	7.2	146
43	Oral Selective Estrogen Receptor Downregulators (SERDs), a Breakthrough Endocrine Therapy for Breast Cancer. Journal of Medicinal Chemistry, 2015, 58, 4883-4887.	2.9	147
44	Efficacy of SERD/SERM Hybrid-CDK4/6 Inhibitor Combinations in Models of Endocrine Therapy–Resistant Breast Cancer. Clinical Cancer Research, 2015, 21, 5121-5130.	3.2	126
45	Disulfiram (DSF) acts as a copper ionophore to induce copperâ€dependent oxidative stress and mediate antiâ€tumor efficacy in inflammatory breast cancer. Molecular Oncology, 2015, 9, 1155-1168.	2.1	168
46	Evaluation of the pharmacological activities of RAD1901, a selective estrogen receptor degrader. Endocrine-Related Cancer, 2015, 22, 713-724.	1.6	81
47	Identification of a Novel Coregulator, SH3YL1, That Interacts With the Androgen Receptor N-Terminus. Molecular Endocrinology, 2015, 29, 1426-1439.	3.7	22
48	Pregnancy and Smoothelin-like Protein 1 (SMTNL1) Deletion Promote the Switching of Skeletal Muscle to a Glycolytic Phenotype in Human and Mice. Journal of Biological Chemistry, 2015, 290, 17985-17998.	1.6	19
49	Obesity, Cholesterol Metabolism, and Breast Cancer Pathogenesis. Cancer Research, 2014, 74, 4976-4982.	0.4	86
50	Systematic identification of signaling pathways with potential to confer anticancer drug resistance. Science Signaling, 2014, 7, ra121.	1.6	163
51	4,4′-Unsymmetrically substituted 3,3′-biphenyl alpha helical proteomimetics as potential coactivator binding inhibitors. Bioorganic and Medicinal Chemistry, 2014, 22, 917-926.	1.4	10
52	Cholesterol and breast cancer pathophysiology. Trends in Endocrinology and Metabolism, 2014, 25, 649-655.	3.1	141
53	From empirical to mechanism-based discovery of clinically useful Selective Estrogen Receptor Modulators (SERMs). Steroids, 2014, 90, 30-38.	0.8	41
54	Copper Signaling Axis as a Target for Prostate Cancer Therapeutics. Cancer Research, 2014, 74, 5819-5831.	0.4	143

#	Article	IF	Citations
55	Delineation of a FOXA1/ERî±/AGR2 Regulatory Loop That Is Dysregulated in Endocrine Therapy–Resistant Breast Cancer. Molecular Cancer Research, 2014, 12, 1829-1839.	1.5	35
56	27-Hydroxycholesterol Links Hypercholesterolemia and Breast Cancer Pathophysiology. Science, 2013, 342, 1094-1098.	6.0	635
57	The molecular mechanisms underlying the pharmacological actions of estrogens, SERMs and oxysterols: Implications for the treatment and prevention of osteoporosis. Bone, 2013, 53, 42-50.	1.4	96
58	Bazedoxifene Exhibits Antiestrogenic Activity in Animal Models of Tamoxifen-Resistant Breast Cancer: Implications for Treatment of Advanced Disease. Clinical Cancer Research, 2013, 19, 2420-2431.	3.2	127
59	Aryl hydrocarbon receptor deficiency causes dysregulated cellular matrix metabolism and age-related macular degeneration-like pathology. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E4069-78.	3.3	74
60	Molecular Pathways: The Metabolic Regulator Estrogen-Related Receptor \hat{l}_{\pm} as a Therapeutic Target in Cancer. Clinical Cancer Research, 2012, 18, 6089-6095.	3.2	69
61	Research Resource: Transcriptional Profiling in a Cellular Model of Breast Cancer Reveals Functional and Mechanistic Differences Between Clinically Relevant SERM and Between SERM/Estrogen Complexes. Molecular Endocrinology, 2012, 26, 1235-1248.	3.7	55
62	The Oxysterol, 27-Hydroxycholesterol, Links Cholesterol Metabolism to Bone Homeostasis Through Its Actions on the Estrogen and Liver X Receptors. Endocrinology, 2011, 152, 4691-4705.	1.4	92
63	The turnover of estrogen receptor \hat{l}_{\pm} by the selective estrogen receptor degrader (SERD) fulvestrant is a saturable process that is not required for antagonist efficacy. Biochemical Pharmacology, 2011, 82, 122-130.	2.0	118
64	The Metabolic Regulator ERRÎ \pm , a Downstream Target of HER2/IGF-1R, as a Therapeutic Target in Breast Cancer. Cancer Cell, 2011, 20, 500-510.	7.7	126
65	Identification of Ligand-Selective Peptide Antagonists of the Mineralocorticoid Receptor Using Phage Display. Molecular Endocrinology, 2011, 25, 32-43.	3.7	46
66	CaM Kinase Kinase \hat{I}^2 -Mediated Activation of the Growth Regulatory Kinase AMPK Is Required for Androgen-Dependent Migration of Prostate Cancer Cells. Cancer Research, 2011, 71, 528-537.	0.4	124
67	WNT11 Expression Is Induced by Estrogen-Related Receptor \hat{l}_{\pm} and \hat{l}^{2} -Catenin and Acts in an Autocrine Manner to Increase Cancer Cell Migration. Cancer Research, 2010, 70, 9298-9308.	0.4	126
68	Mechanisms of Progesterone Receptor Inhibition of Inflammatory Responses in Cellular Models of Breast Cancer. Molecular Endocrinology, 2010, 24, 2292-2302.	3.7	32
69	The Endogenous Selective Estrogen Receptor Modulator 27-Hydroxycholesterol Is a Negative Regulator of Bone Homeostasis. Endocrinology, 2010, 151, 3675-3685.	1.4	96
70	The molecular mechanisms underlying the pharmacological actions of ER modulators: implications for new drug discovery in breast cancer. Current Opinion in Pharmacology, 2010, 10, 620-628.	1.7	162
71	Inhibition of prostate cancer cell growth by second-site androgen receptor antagonists. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 12178-12183.	3.3	43
72	Induction of Krýppel-Like Factor 5 Expression by Androgens Results in Increased CXCR4-Dependent Migration of Prostate Cancer Cells <i>in Vitro</i> . Molecular Endocrinology, 2009, 23, 1385-1396.	3.7	62

#	Article	lF	Citations
73	Fasting-Induced Hepatic Production of DHEA Is Regulated by PGC-1α, ERRα, and HNF4α. Molecular Endocrinology, 2009, 23, 1171-1182.	3.7	41
74	Estrogen-related receptor alpha induces the expression of vascular endothelial growth factor in breast cancer cells. Journal of Steroid Biochemistry and Molecular Biology, 2009, 114, 106-112.	1.2	83
75	The Homeodomain Protein HOXB13 Regulates the Cellular Response to Androgens. Molecular Cell, 2009, 36, 405-416.	4.5	183
76	27-Hydroxycholesterol: a potential endogenous regulator of estrogen receptor signaling. Trends in Pharmacological Sciences, 2008, 29, 510-514.	4.0	38
77	Differential effects of prostate cancer therapeutics on neuroendocrine transdifferentiation. Molecular Cancer Therapeutics, 2008, 7, 659-669.	1.9	38
78	Development of a Small-Molecule Serum- and Glucocorticoid-Regulated Kinase-1 Antagonist and Its Evaluation as a Prostate Cancer Therapeutic. Cancer Research, 2008, 68, 7475-7483.	0.4	182
79	Estrogen-Related Receptor α Is Critical for the Growth of Estrogen Receptor–Negative Breast Cancer. Cancer Research, 2008, 68, 8805-8812.	0.4	138
80	27-Hydroxycholesterol Is an Endogenous Selective Estrogen Receptor Modulator. Molecular Endocrinology, 2008, 22, 65-77.	3.7	255
81	Definition of the Molecular Basis for Estrogen Receptor-Related Receptor-α-Cofactor Interactions. Molecular Endocrinology, 2007, 21, 62-76.	3.7	51
82	The Nuclear Receptor-Coactivator Interaction Surface as a Target for Peptide Antagonists of the Peroxisome Proliferator-Activated Receptors. Molecular Endocrinology, 2007, 21, 2361-2377.	3.7	38
83	Definition of Functionally Important Mechanistic Differences among Selective Estrogen Receptor Down-regulators. Cancer Research, 2007, 67, 9549-9560.	0.4	107
84	The vitamin D receptor interacts preferentially with DRIP205-like LxxLL motifs. Archives of Biochemistry and Biophysics, 2007, 460, 206-212.	1.4	25
85	Linking Ligand-Induced Alterations in Androgen Receptor Structure to Differential Gene Expression: A First Step in the Rational Design of Selective Androgen Receptor Modulators. Molecular Endocrinology, 2006, 20, 1201-1217.	3.7	66
86	Receptor-Selective Coactivators as Tools to Define the Biology of Specific Receptor-Coactivator Pairs. Molecular Cell, 2006, 24, 797-803.	4.5	65
87	Mechanismâ€based discovery as an approach to identify the next generation of estrogen receptor modulators. FASEB Journal, 2006, 20, 2432-2434.	0.2	11
88	The Retinoid X Receptor Regulates Human Hematopoietic Stem Cell Fate Blood, 2006, 108, 1324-1324.	0.6	0
89	Coactivation of Liver Receptor Homologue-1 by Peroxisome Proliferator-Activated Receptor \hat{I}^3 Coactivator-1 \hat{I} ± on Aromatase Promoter II and Its Inhibition by Activated Retinoid X Receptor Suggest a Novel Target for Breast-Specific Antiestrogen Therapy. Cancer Research, 2005, 65, 11762-11770.	0.4	65
90	Identification and Structureâ^'Activity Relationship of Phenolic Acyl Hydrazones as Selective Agonists for the Estrogen-Related Orphan Nuclear Receptors ERRβ and ERRγ. Journal of Medicinal Chemistry, 2005, 48, 3107-3109.	2.9	105

#	Article	IF	Citations
91	Structural Basis for an Unexpected Mode of SERM-Mediated ER Antagonism. Molecular Cell, 2005, 18, 413-424.	4.5	225
92	Androgen receptor–cofactor interactions as targets for new drug discovery. Trends in Pharmacological Sciences, 2005, 26, 225-228.	4.0	74
93	Coregulators in Nuclear Estrogen Receptor Action: From Concept to Therapeutic Targeting. Molecular Interventions: Pharmacological Perspectives From Biology, Chemistry and Genomics, 2005, 5, 343-357.	3.4	273
94	Modulation of Aldehyde Dehydrogenase and Retinoid Signaling Induces the Expansion of Human Hematopoietic Stem Cells Blood, 2005, 106, 1713-1713.	0.6	0
95	The molecular pharmacology of estrogen receptor modulators: implications for the treatment of breast cancer. Clinical Cancer Research, 2005, 11, 871s-7s.	3.2	33
96	Short-chain fatty acids enhance nuclear receptor activity through mitogen-activated protein kinase activation and histone deacetylase inhibition. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 7199-7204.	3.3	97
97	The molecular determinants of estrogen receptor pharmacology. Maturitas, 2004, 48, 7-12.	1.0	57
98	Mining the Complexities of the Estrogen Signaling Pathways for Novel Therapeutics. Endocrinology, 2003, 144, 4237-4240.	1.4	43
99	Application of Random Peptide Phage Display to the Study of Nuclear Hormone Receptors. Methods in Enzymology, 2003, 364, 118-142.	0.4	14
100	SERMs (Selective Estrogen Receptor Modulators)., 2003,, 335-340.		0
101	Pharmacological uncoupling of androgen receptor-mediated prostate cancer cell proliferation and prostate-specific antigen secretion. Cancer Research, 2003, 63, 8029-36.	0.4	35
102	Evaluation of Ligand-Dependent Changes in AR Structure Using Peptide Probes. Molecular Endocrinology, 2002, 16, 647-660.	3.7	71
103	A Negative Coregulator for the Human ER. Molecular Endocrinology, 2002, 16, 459-468.	3.7	79
104	Identification of a Negative Regulatory Surface within Estrogen Receptor $\hat{l}\pm$ Provides Evidence in Support of a Role for Corepressors in Regulating Cellular Responses to Agonists and Antagonists. Molecular Endocrinology, 2002, 16, 1778-1792.	3.7	97
105	Allosteric Regulation of Estrogen Receptor Structure, Function, and Coactivator Recruitment by Different Estrogen Response Elements. Molecular Endocrinology, 2002, 16, 469-486.	3.7	230
106	Common Estrogen Receptor Polymorphism Augments Effects of Hormone Replacement Therapy on E-Selectin but Not C-Reactive Protein. Circulation, 2002, 105, 1879-1882.	1.6	314
107	Connections and Regulation of the Human Estrogen Receptor. Science, 2002, 296, 1642-1644.	6.0	518
108	Elucidation of the molecular mechanism of action of selective estrogen receptor modulators. American Journal of Cardiology, 2002, 90, F35-F43.	0.7	48

#	Article	IF	CITATIONS
109	Definition of the Molecular and Cellular Mechanisms Underlying the Tissue-selective Agonist/Antagonist Activities of Selective Estrogen Receptor Modulators. Endocrine Reviews, 2002, 57, 295-316.	7.1	111
110	The Human Estrogen Receptor- \hat{l}_{\pm} Is a Ubiquitinated Protein Whose Stability Is Affected Differentially by Agonists, Antagonists, and Selective Estrogen Receptor Modulators. Journal of Biological Chemistry, 2001, 276, 35684-35692.	1.6	404
111	Development of an ER Action Indicator Mouse for the Study of Estrogens, Selective ER Modulators (SERMs), and Xenobiotics. Endocrinology, 2001, 142, 4721-4728.	1.4	72
112	Capitalizing on the Complexities of Estrogen Receptor Pharmacology in the Quest for the Perfect SERM. Annals of the New York Academy of Sciences, 2001, 949, 16-35.	1.8	34
113	Development of Peptide Antagonists That Target Estrogen Receptor \hat{l}^2 -Coactivator Interactions. Molecular Endocrinology, 2000, 14, 2010-2023.	3.7	69
114	Modulation of Estrogen Receptor- $\hat{l}\pm$ Transcriptional Activity by the Coactivator PGC-1. Journal of Biological Chemistry, 2000, 275, 16302-16308.	1.6	193
115	Comparative Analyses of Mechanistic Differences Among Antiestrogens 1. Endocrinology, 1999, 140, 5828-5840.	1.4	214
116	The Estrogen Receptor \hat{l}^2 -Isoform (ER \hat{l}^2) of the Human Estrogen Receptor Modulates ER \hat{l}^\pm Transcriptional Activity and Is a Key Regulator of the Cellular Response to Estrogens and Antiestrogens 1. Endocrinology, 1999, 140, 5566-5578.	1.4	939
117	Peptide Antagonists of the Human Estrogen Receptor. Science, 1999, 285, 744-746.	6.0	352
118	Dissection of the LXXLL Nuclear Receptor-Coactivator Interaction Motif Using Combinatorial Peptide Libraries: Discovery of Peptide Antagonists of Estrogen Receptors \hat{l}_{\pm} and \hat{l}_{\pm} . Molecular and Cellular Biology, 1999, 19, 8226-8239.	1.1	349
119	Enhancement of Estrogen Receptor Transcriptional Activity by the Coactivator GRIP-1 Highlights the Role of Activation Function 2 in Determining Estrogen Receptor Pharmacology. Journal of Biological Chemistry, 1998, 273, 6679-6688.	1.6	90
120	Identification of a Third Autonomous Activation Domain within the Human Estrogen Receptor. Molecular Endocrinology, 1997, 11, 747-754.	3.7	90
121	BRCA1 expression is not directly responsive to estrogen. Oncogene, 1997, 14, 115-121.	2.6	109
122	Identification of a New Subclass of Alu DNA Repeats Which Can Function as Estrogen Receptor-dependent Transcriptional Enhancers. Journal of Biological Chemistry, 1995, 270, 22777-22782.	1.6	205
123	Definition of the critical cellular components which distinguish between hormone and antihormone activated progesterone receptor. Journal of Steroid Biochemistry and Molecular Biology, 1995, 53, 487-495.	1.2	29
124	Creation of an active estrogen-responsive element by a single base change in the flanking sequence of a cellular oncogene: A possible mechanism for hormonal carcinogenesis?. Molecular Carcinogenesis, 1993, 7, 76-82.	1.3	10
125	Development of an ER Action Indicator Mouse for the Study of Estrogens, Selective ER Modulators (SERMs), and Xenobiotics. , 0, .		23
126	Identification and Characterization of Novel Estrogen Receptor- \hat{l}^2 -Sparing Antiprogestins. , 0, .		7