Carine Edith Chan-Thaw

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5903935/publications.pdf

Version: 2024-02-01

41 papers 2,286 citations

279798 23 h-index 265206 42 g-index

45 all docs

45 docs citations

45 times ranked

3427 citing authors

#	Article	IF	CITATIONS
1	DFT-Assisted Spectroscopic Studies on the Coordination of Small Ligands to Palladium: From Isolated Ions to Nanoparticles. Journal of Physical Chemistry C, 2020, 124, 4781-4790.	3.1	4
2	Dual-Site-Mediated Hydrogenation Catalysis on Pd/NiO: Selective Biomass Transformation and Maintenance of Catalytic Activity at Low Pd Loading. ACS Catalysis, 2020, 10, 5483-5492.	11.2	52
3	Metal-Support Cooperative Effects in Au/VPO for the Aerobic Oxidation of Benzyl Alcohol to Benzyl Benzoate. Nanomaterials, 2019, 9, 299.	4.1	10
4	Selective Benzyl Alcohol Oxidation over Pd Catalysts. Catalysts, 2018, 8, 431.	3.5	50
5	Understanding Heteroatom-Mediated Metal–Support Interactions in Functionalized Carbons: A Perspective Review. Applied Sciences (Switzerland), 2018, 8, 1159.	2.5	60
6	Metal Carbides for Biomass Valorization. Applied Sciences (Switzerland), 2018, 8, 259.	2.5	15
7	Tandem Site- and Size-Controlled Pd Nanoparticles for the Directed Hydrogenation of Furfural. ACS Catalysis, 2017, 7, 2266-2274.	11.2	113
8	Impact of Support Oxide Acidity in Pt-Catalyzed HMF Hydrogenation in Alcoholic Medium. Catalysis Letters, 2017, 147, 345-359.	2.6	18
9	Molecular Origin of the Selectivity Differences between Palladium and Gold–Palladium in Benzyl Alcohol Oxidation: Different Oxygen Adsorption Properties. ChemCatChem, 2017, 9, 253-257.	3.7	33
10	Enhanced Activity of Au/NiO Nanohybrids for the Reductive Amination of Benzyl Alcohol. Materials, 2017, 10, 1435.	2.9	3
11	Tailored N-Containing Carbons as Catalyst Supports in Alcohol Oxidation. Materials, 2016, 9, 114.	2.9	6
12	Au-Based Catalysts: Electrochemical Characterization for Structural Insights. Molecules, 2016, 21, 261.	3.8	8
13	Untangling the Role of the Capping Agent in Nanocatalysis: Recent Advances and Perspectives. Catalysts, 2016, 6, 185.	3.5	175
14	Spectroscopic Investigation of Titaniaâ€Supported Gold Nanoparticles Prepared by a Modified Deposition/Precipitation Method for the Oxidation of CO. ChemCatChem, 2016, 8, 2136-2145.	3.7	11
15	Nâ€Modified Carbonâ€Based Materials: Nanoscience for Catalysis. Chemical Record, 2016, 16, 2187-2197.	5.8	10
16	Microkinetic Modeling of Benzyl Alcohol Oxidation on Carbonâ€Supported Palladium Nanoparticles. ChemCatChem, 2016, 8, 2482-2491.	3.7	39
17	Metal nanoparticles on carbon based supports: The effect of the protective agent removal. Catalysis Today, 2016, 278, 91-96.	4.4	24
18	Characterisation of gold catalysts. Chemical Society Reviews, 2016, 45, 4953-4994.	38.1	140

#	Article	IF	CITATIONS
19	The confinement effect on the activity of Au NPs in polyol oxidation. Catalysis Science and Technology, 2016, 6, 598-601.	4.1	20
20	Effect of the preparation method of supported Au nanoparticles in the liquid phase oxidation of glycerol. Applied Catalysis A: General, 2016, 514, 267-275.	4.3	37
21	Valorisation of Glycerol to Fine Chemicals and Fuels. Advances in Chemical and Materials Engineering Book Series, 2016, , 352-384.	0.3	1
22	Acidâ€Functionalized Mesoporous Carbon: An Efficient Support for Rutheniumâ€Catalyzed γâ€Valerolactone Production. ChemSusChem, 2015, 8, 2520-2528.	6.8	58
23	PdH _{<i>x</i>} Entrapped in a Covalent Triazine Framework Modulates Selectivity in Glycerol Oxidation. ChemCatChem, 2015, 7, 2149-2154.	3.7	30
24	Operando Attenuated Total Reflectance FTIR Spectroscopy: Studies on the Different Selectivity Observed in Benzyl Alcohol Oxidation. ChemCatChem, 2015, 7, 2534-2541.	3.7	23
25	AuPt Alloy on TiO ₂ : A Selective and Durable Catalyst for <scp> </scp> â€Sorbose Oxidation to 2â€Ketoâ€Gulonic Acid. ChemSusChem, 2015, 8, 4189-4194.	6.8	14
26	Selective Oxidation of Raw Glycerol Using Supported AuPd Nanoparticles. Catalysts, 2015, 5, 131-144.	3.5	28
27	Bismuth modified Au-Pt bimetallic catalysts for dihydroxyacetone production. Catalysis Today, 2015, 249, 103-108.	4.4	39
28	Tailoring Gold Nanoparticle Characteristics and the Impact on Aqueous-Phase Oxidation of Glycerol. ACS Catalysis, 2015, 5, 4377-4384.	11.2	45
29	Glycerol Oxidation Using Gold-Containing Catalysts. Accounts of Chemical Research, 2015, 48, 1403-1412.	15.6	265
30	AuRu/AC as an effective catalyst for hydrogenation reactions. Physical Chemistry Chemical Physics, 2015, 17, 28171-28176.	2.8	20
31	Identifying the Role of Nâ€Heteroatom Location in the Activity of Metal Catalysts for Alcohol Oxidation. ChemCatChem, 2015, 7, 1338-1346.	3.7	22
32	Benzyl Alcohol Oxidation on Carbon‧upported Pd Nanoparticles: Elucidating the Reaction Mechanism. ChemCatChem, 2014, 6, 3464-3473.	3.7	82
33	New generation biofuels: Î ³ -valerolactone into valeric esters in one pot. RSC Advances, 2013, 3, 1302-1306.	3.6	92
34	Influence of Periodic Nitrogen Functionality on the Selective Oxidation of Alcohols. Chemistry - an Asian Journal, 2012, 7, 387-393.	3.3	57
35	A Bifunctional Copper Catalyst for the One Pot-One Step EsterificationÂ+ÂHydrogenation of Tall Oil Fatty Acids. Topics in Catalysis, 2012, 55, 631-636.	2.8	9
36	Gold catalyzed liquid phase oxidation of alcohol: the issue of selectivity. Faraday Discussions, 2011, 152, 353.	3.2	84

#	Article	IF	CITATIONS
37	Redox Properties of Manganese-Containing Zirconia Solid Solution Catalysts Analyzed by In Situ UV–Vis Spectroscopy and Crystal Field Theory. Journal of Physical Chemistry A, 2011, 115, 8100-8112.	2.5	19
38	Au on Nanosized NiO: A Cooperative Effect between Au and Nanosized NiO in the Baseâ€Free Alcohol Oxidation. ChemCatChem, 2011, 3, 1612-1618.	3.7	57
39	Triazineâ€Based Polymers as Nanostructured Supports for the Liquidâ€Phase Oxidation of Alcohols. Chemistry - A European Journal, 2011, 17, 1052-1057.	3.3	106
40	Covalent Triazine Framework as Catalytic Support for Liquid Phase Reaction. Nano Letters, 2010, 10, 537-541.	9.1	363
41	Au NPs on anionic-exchange resin as catalyst for polyols oxidation in batch and fixed bed reactor. Applied Catalysis B: Environmental, 2010, 96, 541-547.	20.2	42