Arnaud Voituriez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5903519/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthesis of chiral polycyclic <i>N</i> -heterocycles <i>via</i> gold(<scp>i</scp>)-catalyzed 1,6-enyne cyclization/intramolecular nucleophilic addition. Chemical Communications, 2022, 58, 3043-3046.	4.1	5
2	Gold(I)-Catalyzed Synthesis of Highly Substituted 1,4-Dicarbonyl Derivatives via Sulfonium [3,3]-Sigmatropic Rearrangement. Organic Letters, 2021, 23, 247-252.	4.6	16
3	The Piancatelli rearrangement of non-symmetrical furan-2,5-dicarbinols for the synthesis of highly functionalized cyclopentenones. Organic Chemistry Frontiers, 2021, 8, 2449-2455.	4.5	9
4	Enantioselective Au(<scp>i</scp>)-catalyzed dearomatization of 1-naphthols with allenamides through Tethered Counterion-Directed Catalysis. Chemical Communications, 2021, 57, 10779-10782.	4.1	11
5	Synthesis and properties of photoswitchable diphosphines and gold(<scp>i</scp>) complexes derived from azobenzenes. Dalton Transactions, 2021, 50, 7284-7292.	3.3	7
6	Triazonine-based bistable photoswitches: synthesis, characterization and photochromic properties. Chemical Communications, 2021, 57, 10079-10082.	4.1	1
7	Phosphineâ€Catalyzed Synthesis of Chiral <i>N</i> â€Heterocycles through (Asymmetric) P(III)/P(V) Redox Cycling. European Journal of Organic Chemistry, 2021, 2021, 3340-3344.	2.4	5
8	Synthesis of Functionalized Cyclobutenes and Spirocycles <i>via</i> Asymmetric P(III)/P(V) Redox Catalysis. Advanced Synthesis and Catalysis, 2021, 363, 4805-4810.	4.3	6
9	Synthesis of Cyclopentenones with C4-Quaternary Stereocenters via Stereospecific [3,3]-Sigmatropic Rearrangement and Applications in Total Synthesis of Sesquiterpenoids. Journal of the American Chemical Society, 2021, 143, 17348-17353.	13.7	27
10	Photoswitchable phosphines in catalysis. ChemCatChem, 2020, 12, 5573-5589.	3.7	18
11	Chiral Phosphathiahelicenes: Improved Synthetic Approach and Uses in Enantioselective Gold(I)-Catalyzed [2 + 2] Cycloadditions of <i>N</i> -Homoallenyl Tryptamines. ACS Catalysis, 2020, 10, 8141-8148.	11.2	41
12	Enantioselective gold(<scp>i</scp>)-catalyzed cyclization/intermolecular nucleophilic additions of 1,5-enyne derivatives. Chemical Communications, 2020, 56, 9457-9460.	4.1	12
13	Tethered Counterion-Directed Catalysis: Merging the Chiral Ion-Pairing and Bifunctional Ligand Strategies in Enantioselective Gold(I) Catalysis. Journal of the American Chemical Society, 2020, 142, 3797-3805.	13.7	77
14	Synthesis and Applications of 9 <i>H</i> â€Pyrrolo[1,2â€ <i>a</i>]indole and 9 <i>H</i> â€Pyrrolo[1,2â€ <i>a</i>]indolâ€9â€one Derivatives. European Journal of Organic Chemistry, 2019, 2019, 5133-5150.	2.4	17
15	Thioarylative Radical Cyclization of Yne-Dienone. Journal of Organic Chemistry, 2019, 84, 10509-10517.	3.2	15
16	Phosphahelicenes with (Thio)Phosphinic Acid and Ester Functions by the Oxidative Photocyclisation Approach. Chemistry - A European Journal, 2019, 25, 15609-15614.	3.3	4
17	Synthesis and Xâ€ray diffraction study of a chiral bisâ€phosphahelicene palladium (II) complex. Chirality, 2019, 31, 561-567.	2.6	4
18	Catalytic and Asymmetric Process via P ^{III} /P ^V â•O Redox Cycling: Access to (Trifluoromethyl)cyclobutenes via a Michael Addition/Wittig Olefination Reaction. Journal of the American Chemical Society, 2019, 141, 10142-10147.	13.7	40

#	Article	IF	CITATIONS
19	Phosphahelicenes: From Chiroptical and Photophysical Properties to OLED Applications. Chemistry - A European Journal, 2019, 25, 5303-5310.	3.3	30
20	Enantioselective Gold(I)-Catalyzed Hydrative Cyclizations of <i>N</i> -Propargyl-ynamides into 3,6-Dihydropyridinones. Organic Letters, 2019, 21, 9281-9285.	4.6	21
21	Revised Theoretical Model on Enantiocontrol in Phosphoric Acid Catalyzed <i>H</i> -Transfer Hydrogenation of Quinoline. Journal of Organic Chemistry, 2018, 83, 2779-2787.	3.2	13
22	Bimetallic gold(<scp>i</scp>) complexes of photoswitchable phosphines: synthesis and uses in cooperative catalysis. Catalysis Science and Technology, 2018, 8, 710-715.	4.1	36
23	Tuning the Structure of Phosphahelicenes for Targeted Applications in Enantioselective Phosphine Organocatalysis. European Journal of Organic Chemistry, 2018, 2018, 5853-5860.	2.4	11
24	Diastereoselective Synthesis of Planar Chiral Phosphoramidites with a Ferrocenophane Scaffold. Organometallics, 2018, 37, 797-801.	2.3	5
25	Inhibition of p53-Murine Double Minute 2 (MDM2) Interactions with 3,3′-Spirocyclopentene Oxindole Derivatives. Journal of Medicinal Chemistry, 2018, 61, 9386-9392.	6.4	26
26	Gold-Catalyzed Synthesis of 2-Sulfenylspiroindolenines via Spirocyclizations. MolBank, 2018, 2018, M985.	0.5	8
27	Phosphine-Catalyzed Reaction between 2-Aminobenzaldehydes and Dialkyl Acetylenedicarboxylates: Synthesis of 1,2-Dihydroquinoline Derivatives and Toward the Development of an Olefination Reaction. Organic Letters, 2018, 20, 4584-4588.	4.6	24
28	Phosphine-Promoted Synthesis of 9 <i>H</i> -Pyrrolo[1,2- <i>a</i>]indole Derivatives via an γ-Umpolung Addition/Intramolecular Wittig Reaction. Journal of Organic Chemistry, 2018, 83, 5801-5806.	3.2	21
29	Synthesis of Nitrogen ontaining Heterocycles and Cyclopentenone Derivatives <i>via</i> Phosphine atalyzed Michael Addition/Intramolecular Wittig Reaction. Advanced Synthesis and Catalysis, 2017, 359, 2304-2315.	4.3	39
30	Enantioselective gold(<scp>i</scp>)-catalyzed rearrangement of cyclopropyl-substituted 1,6-enynes into 2-oxocyclobutyl-cyclopentanes. Chemical Communications, 2017, 53, 7026-7029.	4.1	35
31	Silylâ€Substituted Planar Chiral Phosphoric Acids with Ferroceneâ€bridged Paracyclophane Frameworks: Synthesis, Characterization, and Uses in Enantioselective azaâ€Friedelâ€Crafts Reactions. Advanced Synthesis and Catalysis, 2017, 359, 519-526.	4.3	13
32	Photochemical [2+2] Cyclization of Helical Phosphinamides in Solution and in the Solid State. ChemPhotoChem, 2017, 1, 535-538.	3.0	6
33	Synthesis of Spiroindolenines via Regioselective Gold(I) atalyzed Cyclizations of <i>N</i> â€₽ropargyl Tryptamines. Advanced Synthesis and Catalysis, 2017, 359, 4036-4042.	4.3	61
34	Short Enantioselective Total Synthesis of (â^')-Rhazinilam Using a Gold(I)-Catalyzed Cyclization. Organic Letters, 2017, 19, 4794-4797.	4.6	29
35	Catalytic uses of helicenes displaying phosphorus functions. Comptes Rendus Chimie, 2017, 20, 860-879.	0.5	35
36	Synthesis of 9 <i>H</i> -Pyrrolo[1,2- <i>a</i>]indole and 3 <i>H</i> -Pyrrolizine Derivatives via a Phosphine-Catalyzed Umpolung Addition/Intramolecular Wittig Reaction. Journal of Organic Chemistry, 2016, 81, 4371-4377.	3.2	65

#	Article	IF	CITATIONS
37	Synergistic effects in ambiphilic phosphino-borane catalysts for the hydroboration of CO ₂ . Chemical Communications, 2016, 52, 7553-7555.	4.1	35
38	Synthesis of Spiro[piperidineâ€3,3′â€oxindoles] <i>via</i> Gold(I)â€Catalyzed Dearomatization of <i>N</i> â€Propargyl―and <i>N</i> â€Homoallenylâ€2â€bromotryptamines. Advanced Synthesis and Catalysis, 2016, 358, 3355-3361.	4.3	39
39	Use of Planar Chiral FerrocenylÂphosphineâ€Gold(I) Complexes in the Asymmetric Cycloisomerization of 3â€Hydroxylated 1,5â€Enynes. European Journal of Organic Chemistry, 2016, 2016, 70-75.	2.4	17
40	From phosphine-promoted to phosphine-catalyzed reactions by in situ phosphine oxide reduction. Tetrahedron Letters, 2016, 57, 4443-4451.	1.4	62
41	The synthesis of substituted phosphathiahelicenes via regioselective bromination of a preformed helical scaffold: a new approach to modular ligands for enantioselective gold-catalysis. Chemical Communications, 2016, 52, 10984-10987.	4.1	47
42	Tetrathia[7]helicene Phosphorus Derivatives: Experimental and Theoretical Investigations of Electronic Properties, and Preliminary Applications as Organocatalysts. Asian Journal of Organic Chemistry, 2016, 5, 537-549.	2.7	18
43	Planar Chiral Phosphoramidites with a Paracyclophane Scaffold: Synthesis, Gold(I) Complexes, and Enantioselective Cycloisomerization of Dienynes. Chemistry - A European Journal, 2016, 22, 3278-3281.	3.3	23
44	Synthesis of New Phosphahelicene Scaffolds and Development of Gold(I) atalyzed Enantioselective Allenene Cyclizations. Chemistry - A European Journal, 2015, 21, 11989-11993.	3.3	50
45	Access to New Endoperoxide Derivatives by Electrochemical Oxidation of Substituted 3â€Azabicyclo[4.1.0]heptâ€4â€enes. Chemistry - A European Journal, 2015, 21, 5584-5593.	3.3	9
46	Phosphahelicenes in Asymmetric Organocatalysis: [3+2] Cyclizations of γ‣ubstituted Allenes and Electronâ€Poor Olefins. Angewandte Chemie - International Edition, 2015, 54, 5470-5473.	13.8	117
47	Catalytic Cyclization Reactions of Huisgen Zwitterion with α-Ketoesters by in Situ Chemoselective Phosphine Oxide Reduction. Organic Letters, 2015, 17, 1537-1540.	4.6	44
48	Phosphine Organocatalysis for the Synthesis of Spirocyclic Compounds. Synlett, 2015, 26, 142-166.	1.8	46
49	Thiophostoneâ€Derived BrÃ,nsted Acids in the Organocatalyzed Transfer Hydrogenation of Quinolines: Influence of the P‣tereogenicity. European Journal of Organic Chemistry, 2014, 2014, 188-193.	2.4	24
50	Helicenes with Embedded Phosphole Units in Enantioselective Gold Catalysis. Angewandte Chemie - International Edition, 2014, 53, 861-865.	13.8	170
51	A [2+2+2] cyclization strategy for the synthesis of phosphorus embedding [6]helicene-like structures. Chemical Communications, 2014, 50, 2199.	4.1	31
52	Helicene-like chiral auxiliaries in asymmetric catalysis. Dalton Transactions, 2014, 43, 15263-15278.	3.3	153
53	Phosphathiahelicenes: Synthesis and Uses in Enantioselective Gold Catalysis. Chemistry - A European Journal, 2014, 20, 12373-12376.	3.3	82
54	Synthesis of 3,3′-Spirocyclic Oxindoles via Phosphine Catalyzed [4 + 2] Cyclizations. Organic Letters, 2013, 15, 4002-4005.	4.6	112

#	Article	IF	CITATIONS
55	[3,3]Paracyclophanes as planar chiral scaffolds for the synthesis of new phosphoric acids. Chemical Communications, 2013, 49, 6084.	4.1	31
56	Phosphine-Catalyzed Synthesis of 3,3-Spirocyclopenteneoxindoles from Î ³ -Substituted Allenoates: Systematic Studies and Targeted Applications. Journal of Organic Chemistry, 2013, 78, 1488-1496.	3.2	73
57	Phosphine Organocatalysis in the Synthesis of Natural Products and Bioactive Compounds. ChemCatChem, 2013, 5, 1055-1065.	3.7	102
58	Platinum(II) Catalyzed Enantioselective Cycloisomerizations of 3â€Hydroxylated 1,5â€Enynes. ChemCatChem, 2013, 5, 2051-2057.	3.7	15
59	Heterohelicenes with Embedded Pâ€Chiral 1 <i>H</i> â€Phosphindole or Dibenzophosphole Units: Diastereoselective Photochemical Synthesis and Structural Characterization. Chemistry - A European Journal, 2013, 19, 9939-9947.	3.3	41
60	Development of Chiral Phosphoric Acids based on Ferroceneâ€Bridged Paracyclophane Frameworks. Advanced Synthesis and Catalysis, 2013, 355, 3613-3624.	4.3	40
61	Stereoselective synthesis of planar chiral 2,2′-diarylsubstituted ferrocene derivatives as precursors for new 2-phospha[3]ferrocenophanes. Journal of Organometallic Chemistry, 2012, 716, 187-192.	1.8	15
62	1 <i>Hâ€</i> Phosphindoles as Structural Units in the Synthesis of Chiral Helicenes. Angewandte Chemie - International Edition, 2012, 51, 6748-6752.	13.8	76
63	Enantioselective, transition metal catalyzed cycloisomerizations. Chemical Society Reviews, 2012, 41, 4884.	38.1	220
64	Heterocyclic Spiranes and Dispiranes <i>via</i> Enantioselective Phosphineâ€Catalyzed [3+2] Annulations. Advanced Synthesis and Catalysis, 2012, 354, 408-414.	4.3	46
65	Organocatalytic enantioselective desymmetrization of cyclic enonesviaphosphine promoted [3+2] annulations. Chemical Communications, 2011, 47, 1015-1017.	4.1	77
66	Stereoselective Synthesis of <i>syn</i> â€Î²â€Amino Propargylic Ethers: Application to the Asymmetric Syntheses of (+)â€Î²â€€onhydrine and (â^')â€Balanol. Advanced Synthesis and Catalysis, 2011, 353, 2137-2151.	4.3	36
67	Phosphine-Catalyzed [3+2] Cyclizations: Applications to the Enantioselective Synthesis of Cyclopentene-Fused Chromanones and Dihydroquinolinones. Synthesis, 2011, 2011, 2003-2009.	2.3	9
68	Studies on the asymmetric, phosphine-promoted [3+2] annulations of allenic esters with 2-aryl-1,1-dicyanoalkenes. Tetrahedron: Asymmetry, 2010, 21, 1569-1573.	1.8	54
69	Expanding the Scope of Enantioselective FerroPHANEâ€Promoted [3+2] Annulations with α,βâ€Unsaturated Ketones. Chemistry - A European Journal, 2010, 16, 1033-1045.	3.3	102
70	An Organocatalytic [3+2] Cyclisation Strategy for the Highly Enantioselective Synthesis of Spirooxindoles. Chemistry - A European Journal, 2010, 16, 12541-12544.	3.3	194
71	Enantioselective Phosphine Organocatalysis. Synlett, 2010, 2010, 174-194.	1.8	414
72	Preparation of a Storable Zinc Carbenoid Species and Its Application in Cyclopropanation, Chain Extension, and [2,3]-Sigmatropic Rearrangement Reactions. Journal of Organic Chemistry, 2010, 75, 1244-1250.	3.2	56

#	Article	IF	CITATIONS
73	Synthesis of Chiral 2â€Phospha[3]ferrocenophanes and their Behaviour as Organocatalysts in [3+2] Cyclization Reactions. Advanced Synthesis and Catalysis, 2009, 351, 1968-1976.	4.3	84
74	A facile synthesis of 4-methylene-1,3-oxazolidines from Î ³ -hydroxybutynoate and N-tosylimines. Tetrahedron Letters, 2009, 50, 4700-4702.	1.4	9
75	Stereo- and Enantioselective Synthesis of Acetylenic 2-Amino-1,3-diol Stereotriads. Organic Letters, 2009, 11, 931-934.	4.6	27
76	2-Phospha[3]ferrocenophanes with Planar Chirality: Synthesis and Use in Enantioselective Organocatalytic [3 + 2] Cyclizations. Journal of the American Chemical Society, 2008, 130, 14030-14031.	13.7	258
77	Chiral Sulfur Ligands for Asymmetric Catalysis. Chemical Reviews, 2007, 107, 5133-5209.	47.7	513
78	Short and Efficient Asymmetric Synthesis of (â^')-α-Conhydrine. Journal of Organic Chemistry, 2007, 72, 5358-5361.	3.2	40
79	Asymmetric Synthesis of (â^')-1-Hydroxyquinolizidinone, a Common Intermediate for the Syntheses of (â^')-Homopumiliotoxin 223G and (â^')-Epiquinamide. Organic Letters, 2007, 9, 4705-4708.	4.6	46
80	Electropolymerized Cr–salen complexes for the heterogeneous asymmetric hetero Diels-Alder reaction. Journal of Molecular Catalysis A, 2007, 272, 20-25.	4.8	32
81	Design and electropolymerization of new chiral thiophene–salen complexes. Synthetic Metals, 2006, 156, 166-175.	3.9	29
82	Enantioselective Cyclopropanation with TADDOL-Derived Phosphate Ligands. Advanced Synthesis and Catalysis, 2006, 348, 2363-2370.	4.3	46
83	New Sulfur-Coordinating Chiral Ligands for the Tsuji—Trost Reaction ChemInform, 2004, 35, no.	0.0	0
84	Synthesis and electropolymerization of new sulfur-containing monomers. Synthetic Metals, 2004, 146, 139-143.	3.9	5
85	New sulfur-coordinating chiral ligands for the Tsuji—Trost reaction. Russian Chemical Bulletin, 2003, 52, 2588-2594.	1.5	6
86	Synthesis of New Sulfur-Containing Oxazoline Ligands and Their Use in Palladium-Catalyzed Allylic Substitution ChemInform, 2003, 34, no.	0.0	0
87	Synthesis of new sulfur-containing oxazoline ligands and their use in palladium-catalyzed allylic substitution. Tetrahedron: Asymmetry, 2003, 14, 339-346.	1.8	28
88	Dibenzothiophene-bis(oxazolines): new sulfur-containing ligands tested in asymmetric palladium-catalyzed allylic substitutions. Tetrahedron Letters, 2002, 43, 4907-4909.	1.4	23