
Alexander Gogos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/590325/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Antibiofilm activity of nanosilver coatings against Staphylococcus aureus. Journal of Colloid and Interface Science, 2022, 608, 3141-3150.	5.0	25
2	Bi ₂ O ₃ boosts brightness, biocompatibility and stability of Mn-doped Ba ₃ (VO ₄) ₂ as NIR-II contrast agent. Journal of Materials Chemistry B, 2021, 9, 3038-3046.	2.9	2
3	Inorganic nanohybrids combat antibiotic-resistant bacteria hiding within human macrophages. Nanoscale, 2021, 13, 8224-8234.	2.8	14
4	Scalable Synthesis of Ultrasmall Metal Oxide Radio-Enhancers Outperforming Gold. Chemistry of Materials, 2021, 33, 3098-3112.	3.2	9
5	Quantification of individual Rare Earth Elements from industrial sources in sewage sludge. Water Research X, 2021, 11, 100092.	2.8	23
6	Release of gold (Au), silver (Ag) and cerium dioxide (CeO2) nanoparticles from sewage sludge incineration ash. Environmental Science: Nano, 2021, 8, 3220-3232.	2.2	4
7	Acetone Sensing and Catalytic Conversion by Pd-Loaded SnO2. Materials, 2021, 14, 5921.	1.3	11
8	Quantification of anthropogenic and geogenic Ce in sewage sludge based on Ce oxidation state and rare earth element patterns. Water Research X, 2020, 9, 100059.	2.8	9
9	Correlative Cathodoluminescence Electron Microscopy: Immunolabeling Using Rareâ€Earth Element Doped Nanoparticles. Small, 2020, 16, 2004615.	5.2	8
10	Key principles and operational practices for improved nanotechnology environmental exposure assessment. Nature Nanotechnology, 2020, 15, 731-742.	15.6	66
11	Uptake, distribution and radio-enhancement effects of gold nanoparticles in tumor microtissues. Nanoscale Advances, 2020, 2, 2992-3001.	2.2	7
12	Synchrotron hard X-ray chemical imaging of trace element speciation in heterogeneous samples: development of criteria for uncertainty analysis. Journal of Analytical Atomic Spectrometry, 2020, 35, 567-579.	1.6	6
13	Transformation of Nanoscale and Ionic Cu and Zn during the Incineration of Digested Sewage Sludge (Biosolids). Environmental Science & Technology, 2019, 53, 11704-11713.	4.6	19
14	Transformation of cerium dioxide nanoparticles during sewage sludge incineration. Environmental Science: Nano, 2019, 6, 1765-1776.	2.2	13
15	Tailoring the Colloidal Stability, Magnetic Separability, and Cytocompatibility of High-Capacity Magnetic Anion Exchangers. ACS Applied Materials & Interfaces, 2019, 11, 48341-48351.	4.0	9
16	Influence of organic compounds on the sulfidation of copper oxide nanoparticles. Environmental Science: Nano, 2018, 5, 2560-2569.	2.2	13
17	A critical evaluation of nanopesticides and nanofertilizers against their conventional analogues. Nature Nanotechnology, 2018, 13, 677-684.	15.6	685
18	Effects of titanium dioxide nanoparticles on soil microbial communities and wheat biomass. Soil Biology and Biochemistry, 2017, 111, 85-93.	4.2	73

ALEXANDER GOGOS

#	Article	IF	CITATIONS
19	Sulfidation kinetics of copper oxide nanoparticles. Environmental Science: Nano, 2017, 4, 1733-1741.	2.2	33
20	Effects of Titanium Dioxide Nanoparticles on Red Clover and Its Rhizobial Symbiont. PLoS ONE, 2016, 11, e0155111.	1.1	25
21	Quantification of Carbon Nanotubes in Environmental Matrices: Current Capabilities, Case Studies, and Future Prospects. Environmental Science & Technology, 2016, 50, 4587-4605.	4.6	104
22	Vertical transport and plant uptake of nanoparticles in a soil mesocosm experiment. Journal of Nanobiotechnology, 2016, 14, 40.	4.2	64
23	Capabilities of asymmetric flow field-flow fractionation coupled to multi-angle light scattering to detect carbon nanotubes in soot and soil. Environmental Science: Nano, 2014, 1, 584-594.	2.2	26
24	Potential of Hyperspectral Imaging Microscopy for Semi-quantitative Analysis of Nanoparticle Uptake by Protozoa. Environmental Science & Technology, 2014, 48, 8760-8767.	4.6	84
25	Nanomaterials in Plant Protection and Fertilization: Current State, Foreseen Applications, and Research Priorities. Journal of Agricultural and Food Chemistry, 2012, 60, 9781-9792.	2.4	629
26	Assessment of suitability of tree species for the production of biomass on trace element contaminated soils. Journal of Hazardous Materials, 2012, 209-210, 233-239.	6.5	20