
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5903197/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Efficient Tandem and Triple-Junction Polymer Solar Cells. Journal of the American Chemical Society, 2013, 135, 5529-5532.	13.7	498
2	Diketopyrrolopyrrole Polymers for Organic Solar Cells. Accounts of Chemical Research, 2016, 49, 78-85.	15.6	435
3	A Planar Copolymer for High Efficiency Polymer Solar Cells. Journal of the American Chemical Society, 2009, 131, 14612-14613.	13.7	407
4	High Quantum Efficiencies in Polymer Solar Cells at Energy Losses below 0.6 eV. Journal of the American Chemical Society, 2015, 137, 2231-2234.	13.7	365
5	Recent progress in organic solar cells (Part I material science). Science China Chemistry, 2022, 65, 224-268.	8.2	349
6	Universal Correlation between Fibril Width and Quantum Efficiency in Diketopyrrolopyrrole-Based Polymer Solar Cells. Journal of the American Chemical Society, 2013, 135, 18942-18948.	13.7	305
7	Efficient Small Bandgap Polymer Solar Cells with High Fill Factors for 300 nm Thick Films. Advanced Materials, 2013, 25, 3182-3186.	21.0	295
8	A real-time study of the benefits of co-solvents in polymer solar cell processing. Nature Communications, 2015, 6, 6229.	12.8	287
9	Small-Bandgap Semiconducting Polymers with High Near-Infrared Photoresponse. Journal of the American Chemical Society, 2014, 136, 12130-12136.	13.7	259
10	Enhancing the Photocurrent in Diketopyrrolopyrrole-Based Polymer Solar Cells via Energy Level Control. Journal of the American Chemical Society, 2012, 134, 13787-13795.	13.7	258
11	Polymer Solar Cells with Diketopyrrolopyrrole Conjugated Polymers as the Electron Donor and Electron Acceptor. Advanced Materials, 2014, 26, 3304-3309.	21.0	245
12	Morphology Control Enables Efficient Ternary Organic Solar Cells. Advanced Materials, 2018, 30, e1803045.	21.0	243
13	An Electron Acceptor with Porphyrin and Perylene Bisimides for Efficient Nonâ€Fullerene Solar Cells. Angewandte Chemie - International Edition, 2017, 56, 2694-2698.	13.8	232
14	Effect of the Fibrillar Microstructure on the Efficiency of High Molecular Weight Diketopyrrolopyrroleâ€Based Polymer Solar Cells. Advanced Materials, 2014, 26, 1565-1570.	21.0	207
15	Homocoupling Defects in Diketopyrrolopyrrole-Based Copolymers and Their Effect on Photovoltaic Performance. Journal of the American Chemical Society, 2014, 136, 11128-11133.	13.7	174
16	Halogenated conjugated molecules for ambipolar field-effect transistors and non-fullerene organic solar cells. Materials Chemistry Frontiers, 2017, 1, 1389-1395.	5.9	173
17	Recent progress in organic solar cells (Part II device engineering). Science China Chemistry, 2022, 65, 1457-1497.	8.2	157
18	Asymmetric Diketopyrrolopyrrole Conjugated Polymers for Fieldâ€Effect Transistors and Polymer Solar Cells Processed from a Nonchlorinated Solvent. Advanced Materials, 2016, 28, 943-950.	21.0	155

#	Article	IF	CITATIONS
19	Polymer:Fullerene Bimolecular Crystals for Nearâ€Infrared Spectroscopic Photodetectors. Advanced Materials, 2017, 29, 1702184.	21.0	150
20	Porphyrinâ^'Dithienothiophene Ï€-Conjugated Copolymers: Synthesis and Their Applications in Field-Effect Transistors and Solar Cells. Macromolecules, 2008, 41, 6895-6902.	4.8	144
21	Hybrid Organic/PbS Quantum Dot Bilayer Photodetector with Low Dark Current and High Detectivity. Advanced Functional Materials, 2018, 28, 1706690.	14.9	143
22	Benzothiadiazole-Based Linear and Star Molecules: Design, Synthesis, and Their Application in Bulk Heterojunction Organic Solar Cells. Chemistry of Materials, 2009, 21, 5327-5334.	6.7	137
23	Polymer Solar Cells: Solubility Controls Fiber Network Formation. Journal of the American Chemical Society, 2015, 137, 11783-11794.	13.7	133
24	Integration of perovskite and polymer photoactive layers to produce ultrafast response, ultraviolet-to-near-infrared, sensitive photodetectors. Materials Horizons, 2017, 4, 242-248.	12.2	127
25	Thermal-Driven Phase Separation of Double-Cable Polymers Enables Efficient Single-Component Organic Solar Cells. Joule, 2019, 3, 1765-1781.	24.0	124
26	"Double-Cable―Conjugated Polymers with Linear Backbone toward High Quantum Efficiencies in Single-Component Polymer Solar Cells. Journal of the American Chemical Society, 2017, 139, 18647-18656.	13.7	119
27	Diketopyrrolopyrrole-based conjugated materials for non-fullerene organic solar cells. Journal of Materials Chemistry A, 2019, 7, 10174-10199.	10.3	111
28	Recent progress of thin-film photovoltaics for indoor application. Chinese Chemical Letters, 2020, 31, 643-653.	9.0	106
29	9-Alkylidene-9 <i>H</i> -Fluorene-Containing Polymer for High-Efficiency Polymer Solar Cells. Macromolecules, 2011, 44, 7617-7624.	4.8	99
30	Evidencing Excellent Thermal―and Photostability for Singleâ€Component Organic Solar Cells with Inherently Builtâ€In Microstructure. Advanced Energy Materials, 2019, 9, 1900409.	19.5	99
31	Flexible organic solar cells: Materials, large-area fabrication techniques and potential applications. Nano Energy, 2021, 89, 106399.	16.0	99
32	Diketopyrrolopyrrole-Based Conjugated Polymers with Perylene Bisimide Side Chains for Single-Component Organic Solar Cells. Chemistry of Materials, 2017, 29, 7073-7077.	6.7	93
33	Tailoring side chains of low band gap polymers for high efficiency polymer solar cells. Polymer, 2010, 51, 3031-3038.	3.8	90
34	Miscibilityâ€Controlled Phase Separation in Doubleâ€Cable Conjugated Polymers for Singleâ€Component Organic Solar Cells with Efficiencies over 8 %. Angewandte Chemie - International Edition, 2020, 59, 21683-21692.	13.8	82
35	High Performance Polymer Nanowire Fieldâ€Effect Transistors with Distinct Molecular Orientations. Advanced Materials, 2015, 27, 4963-4968.	21.0	79
36	Vertical Stratification Engineering for Organic Bulk-Heterojunction Devices. ACS Nano, 2018, 12, 4440-4452.	14.6	77

#	Article	IF	CITATIONS
37	Effect of Alkyl Side Chains of Conjugated Polymer Donors on the Device Performance of Non-Fullerene Solar Cells. Macromolecules, 2016, 49, 6445-6454.	4.8	76
38	Effect of Fluorination on Molecular Orientation of Conjugated Polymers in High Performance Field-Effect Transistors. Macromolecules, 2016, 49, 6431-6438.	4.8	71
39	Wide band gap diketopyrrolopyrrole-based conjugated polymers incorporating biphenyl units applied in polymer solar cells. Chemical Communications, 2014, 50, 679-681.	4.1	70
40	Highly sensitive, sub-microsecond polymer photodetectors for blood oxygen saturation testing. Science China Chemistry, 2021, 64, 1302-1309.	8.2	69
41	Double-Cable Conjugated Polymers with Pendant Rylene Diimides for Single-Component Organic Solar Cells. Accounts of Chemical Research, 2021, 54, 2227-2237.	15.6	67
42	Relating open-circuit voltage losses to the active layer morphology and contact selectivity in organic solar cells. Journal of Materials Chemistry A, 2018, 6, 12574-12581.	10.3	65
43	Photoelectrochemical water splitting in an organic artificial leaf. Journal of Materials Chemistry A, 2015, 3, 23936-23945.	10.3	61
44	The Effect of additive on performance and shelf-stability of HSX-1/PCBM photovoltaic devices. Organic Electronics, 2011, 12, 1544-1551.	2.6	58
45	Ternary organic solar cells based on two compatible PDI-based acceptors with an enhanced power conversion efficiency. Journal of Materials Chemistry A, 2019, 7, 3552-3557.	10.3	58
46	Single-crystal field-effect transistors based on a fused-ring electron acceptor with high ambipolar mobilities. Journal of Materials Chemistry C, 2020, 8, 5370-5374.	5.5	57
47	Increasing donor-acceptor spacing for reduced voltage loss in organic solar cells. Nature Communications, 2021, 12, 6679.	12.8	56
48	From Binary to Ternary: Improving the External Quantum Efficiency of Smallâ€Molecule Acceptorâ€Based Polymer Solar Cells with a Minute Amount of Fullerene Sensitization. Advanced Energy Materials, 2017, 7, 1700328.	19.5	54
49	An Organic–Inorganic Hybrid Electrolyte as a Cathode Interlayer for Efficient Organic Solar Cells. Angewandte Chemie - International Edition, 2021, 60, 8526-8531.	13.8	54
50	Crystalline Cooperativity of Donor and Acceptor Segments in Doubleâ€Cable Conjugated Polymers toward Efficient Single omponent Organic Solar Cells. Angewandte Chemie - International Edition, 2019, 58, 15532-15540.	13.8	53
51	All-small-molecule organic solar cells based on an electron donor incorporating binary electron-deficient units. Journal of Materials Chemistry A, 2016, 4, 6056-6063.	10.3	49
52	A regioregular terpolymer comprising two electron-deficient and one electron-rich unit for ultra small band gap solar cells. Chemical Communications, 2015, 51, 4290-4293.	4.1	48
53	Highly stable photomultiplication-type organic photodetectors with single polymers containing intramolecular traps as the active layer. Journal of Materials Chemistry C, 2022, 10, 7822-7830.	5.5	47
54	Conjugated polymers with broad absorption: Synthesis and application in polymer solar cells. Journal of Polymer Science Part A, 2010, 48, 2571-2578.	2.3	46

#	Article	IF	CITATIONS
55	Dibenzothiophene-Based Planar Conjugated Polymers for High Efficiency Polymer Solar Cells. Macromolecules, 2012, 45, 7843-7854.	4.8	45
56	Conjugated polymer acceptors based on fused perylene bisimides with a twisted backbone for non-fullerene solar cells. Polymer Chemistry, 2017, 8, 3300-3306.	3.9	45
57	Highly sensitive all-polymer photodetectors with ultraviolet-visible to near-infrared photo-detection and their application as an optical switch. Journal of Materials Chemistry C, 2021, 9, 5349-5355.	5.5	45
58	Double-side responsive polymer near-infrared photodetectors with transfer-printed electrode. Journal of Materials Chemistry C, 2016, 4, 1414-1419.	5.5	43
59	Efficient DPP Donor and Nonfullerene Acceptor Organic Solar Cells with High Photonâ€ŧo urrent Ratio and Low Energetic Loss. Advanced Functional Materials, 2019, 29, 1902441.	14.9	43
60	Controlled release of liposome-encapsulated Naproxen from core-sheath electrospun nanofibers. Carbohydrate Polymers, 2014, 111, 18-24.	10.2	41
61	Polymer–polymer solar cells with a near-infrared spectral response. Journal of Materials Chemistry A, 2015, 3, 6756-6760.	10.3	41
62	Industrial viability of single-component organic solar cells. Joule, 2022, 6, 1160-1171.	24.0	40
63	Ternary organic solar cells based on polymer donor, polymer acceptor and PCBM components. Chinese Chemical Letters, 2020, 31, 865-868.	9.0	38
64	Highly Efficient Hybrid Polymer and Amorphous Silicon Multijunction Solar Cells with Effective Optical Management. Advanced Materials, 2016, 28, 2170-2177.	21.0	36
65	Crystalline Conjugated Polymers for Organic Solar Cells: From Donor, Acceptor to Single omponent. Chemical Record, 2019, 19, 962-972.	5.8	36
66	New Methanofullerenes Containing Amide as Electron Acceptor for Construction Photovoltaic Devices. Journal of Physical Chemistry C, 2009, 113, 21970-21975.	3.1	35
67	Effect of structure on the solubility and photovoltaic properties of bis-diketopyrrolopyrrole molecules. Journal of Materials Chemistry A, 2013, 1, 15150.	10.3	35
68	Pyridine-bridged diketopyrrolopyrrole conjugated polymers for field-effect transistors and polymer solar cells. Polymer Chemistry, 2015, 6, 4775-4783.	3.9	34
69	A new strategy for designing polymer electron acceptors: electronrich conjugated backbone with electron-deficient side units. Science China Chemistry, 2018, 61, 824-829.	8.2	34
70	Band Gap Control in Diketopyrrolopyrroleâ€Based Polymer Solar Cells Using Electron Donating Side Chains. Advanced Energy Materials, 2013, 3, 674-679.	19.5	33
71	Zinc oxide nanoparticles as electron transporting interlayer in organic solar cells. Journal of Materials Chemistry C, 2021, 9, 14093-14114.	5.5	33
72	Mechanical Robust Flexible Singleâ€Component Organic Solar Cells. Small Methods, 2021, 5, e2100481.	8.6	33

#	Article	IF	CITATIONS
73	Improving Electron Transport in a Double-Cable Conjugated Polymer via Parallel Perylenetriimide Design. Macromolecules, 2019, 52, 3689-3696.	4.8	32
74	An Organic–Inorganic Hybrid Material Based on Benzo[ghi]perylenetri-imide and Cyclic Titanium-Oxo Cluster for Efficient Perovskite and Organic Solar Cells. CCS Chemistry, 2022, 4, 880-888.	7.8	32
75	Ultrathin Flexible Transparent Composite Electrode via Semi-embedding Silver Nanowires in a Colorless Polyimide for High-Performance Ultraflexible Organic Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 5699-5708.	8.0	32
76	Conjugated polymers with 2,7-linked 3,6-difluorocarbazole as donor unit for high efficiency polymer solar cells. Polymer Chemistry, 2013, 4, 2773.	3.9	31
77	Perfluoroalkyl-substituted conjugated polymers as electron acceptors for all-polymer solar cells: the effect of diiodoperfluoroalkane additives. Journal of Materials Chemistry A, 2016, 4, 7736-7745.	10.3	31
78	Non-fullerene organic solar cells based on diketopyrrolopyrrole polymers as electron donors and ITIC as an electron acceptor. Physical Chemistry Chemical Physics, 2017, 19, 8069-8075.	2.8	31
79	Simple non-fullerene electron acceptors with unfused core for organic solar cells. Chinese Chemical Letters, 2019, 30, 222-224.	9.0	31
80	Revealing the Sideâ€Chainâ€Dependent Ordering Transition of Highly Crystalline Doubleâ€Cable Conjugated Polymers. Angewandte Chemie - International Edition, 2021, 60, 25499-25507.	13.8	31
81	Charge transfer state energy in ternary bulk-heterojunction polymer–fullerene solar cells. Journal of Photonics for Energy, 2014, 5, 057203.	1.3	30
82	Gas-Flow Tailoring Fabrication of Graphene-like Co–N <i>x</i> –C Nanosheet Supported Sub-10 nm PtCo Nanoalloys as Synergistic Catalyst for Air-Cathode Microbial Fuel Cells. ACS Applied Materials & Interfaces, 2017, 9, 22465-22475.	8.0	30
83	Tris[tri(2â€thienyl)phosphine]palladium as the catalyst precursor for thiopheneâ€based Suzukiâ€Miyaura crosscoupling and polycondensation. Journal of Polymer Science Part A, 2008, 46, 4556-4563.	2.3	29
84	Performance limitations in thieno[3,4-c]pyrrole-4,6-dione-based polymer:ITIC solar cells. Physical Chemistry Chemical Physics, 2017, 19, 23990-23998.	2.8	29
85	A selenophene substituted double-cable conjugated polymer enables efficient single-component organic solar cells. Journal of Materials Chemistry C, 2020, 8, 2790-2797.	5.5	29
86	Thermo-induced formation of physical "cross-linking points―of PNIPAM-g-PEO in semidilute aqueous solutions. Journal of Colloid and Interface Science, 2006, 298, 991-995.	9.4	28
87	Self-assembly of carboxylated polythiophene nanowires for improved bulk heterojunction morphology in polymer solar cells. Journal of Materials Chemistry, 2012, 22, 11354.	6.7	28
88	An Electron Acceptor with Porphyrin and Perylene Bisimides for Efficient Nonâ€Fullerene Solar Cells. Angewandte Chemie, 2017, 129, 2738-2742.	2.0	28
89	Doubleâ€Cable Conjugated Polymers with Pendent Nearâ€Infrared Electron Acceptors for Singleâ€Component Organic Solar Cells. Angewandte Chemie - International Edition, 2022, 61, .	13.8	28
90	5,6-Difluorobenzothiadiazole and silafluorene based conjugated polymers for organic photovoltaic cells. Journal of Materials Chemistry C, 2014, 2, 5116-5123.	5.5	27

#	Article	IF	CITATIONS
91	Lateral Photodetectors Based on Double-Cable Polymer/Two-Dimensional Perovskite Heterojunction. ACS Applied Materials & Interfaces, 2020, 12, 8826-8834.	8.0	27
92	Diketopyrrolopyrrole Polymers with Thienyl and Thiazolyl Linkers for Application in Field-Effect Transistors and Polymer Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 30328-30335.	8.0	26
93	An Isoindigoâ€Based "Doubleâ€Cable―Conjugated Polymer for Single―Component Polymer Solar Cells. Chinese Journal of Chemistry, 2018, 36, 515-518.	4.9	26
94	A near-infrared porphyrin-based electron acceptor for non-fullerene organic solar cells. Chinese Chemical Letters, 2018, 29, 371-373.	9.0	26
95	Bilayer–Ternary Polymer Solar Cells Fabricated Using Spontaneous Spreading on Water. Advanced Energy Materials, 2018, 8, 1802197.	19.5	26
96	Boosting the Performance of Non-Fullerene Organic Solar Cells via Cross-Linked Donor Polymers Design. Macromolecules, 2019, 52, 2214-2221.	4.8	26
97	The Impact of Device Polarity on the Performance of Polymer–Fullerene Solar Cells. Advanced Energy Materials, 2018, 8, 1800550.	19.5	25
98	A perylene bisimide derivative with a LUMO level of â^4.56 eV for non-fullerene solar cells. Journal of Materials Chemistry C, 2016, 4, 4134-4137.	5.5	24
99	Multifunctional Diketopyrrolopyrroleâ€Based Conjugated Polymers with Perylene Bisimide Side Chains. Macromolecular Rapid Communications, 2018, 39, e1700611.	3.9	24
100	Conjugated polymers with deep LUMO levels for field-effect transistors and polymer–polymer solar cells. Journal of Materials Chemistry C, 2015, 3, 8255-8261.	5.5	23
101	Thieno[3,4- <i>c</i>]pyrrole-4,6-dione-based conjugated polymers for organic solar cells. Chemical Communications, 2020, 56, 10394-10408.	4.1	23
102	Non-fullerene organic solar cells based on a BODIPY-polymer as electron donor with high photocurrent. Journal of Materials Chemistry C, 2020, 8, 2232-2237.	5.5	23
103	A benzo[ghi]-perylene triimide based double-cable conjugated polymer for single-component organic solar cells. Chinese Chemical Letters, 2022, 33, 466-469.	9.0	23
104	All polymer solar cells with diketopyrrolopyrrole-polymers as electron donor and a naphthalenediimide-polymer as electron acceptor. RSC Advances, 2016, 6, 35677-35683.	3.6	22
105	Small bandgap porphyrin-based polymer acceptors for non-fullerene organic solar cells. Journal of Materials Chemistry C, 2018, 6, 717-721.	5.5	22
106	Ethynyl-linked perylene bisimide based electron acceptors for non-fullerene organic solar cells. Chinese Chemical Letters, 2018, 29, 325-327.	9.0	22
107	Realizing lamellar nanophase separation in a double-cable conjugated polymer <i>via</i> a solvent annealing process. Polymer Chemistry, 2019, 10, 4584-4592.	3.9	22
108	Wool graft polyacrylamidoxime as the adsorbent for both cationic and anionic toxic ions from aqueous solutions. RSC Advances, 2014, 4, 60609-60616.	3.6	21

#	Article	IF	CITATIONS
109	Methylated conjugated polymers based on diketopyrrolopyrrole and dithienothiophene for high performance field-effect transistors. Organic Electronics, 2016, 37, 366-370.	2.6	21
110	Reversible redox activity of ferrocene functionalized hydroxypropyl cellulose and its application to detect H 2 O 2. Carbohydrate Polymers, 2016, 140, 35-42.	10.2	21
111	Effect of Side Groups on the Photovoltaic Performance Based on Porphyrin–Perylene Bisimide Electron Acceptors. ACS Applied Materials & Interfaces, 2018, 10, 32454-32461.	8.0	21
112	Conjugated molecular dyads with diketopyrrolopyrrole-based conjugated backbones for single-component organic solar cells. Materials Chemistry Frontiers, 2019, 3, 1565-1573.	5.9	21
113	A diketopyrrolopyrrole-based macrocyclic conjugated molecule for organic electronics. Journal of Materials Chemistry C, 2019, 7, 3802-3810.	5.5	21
114	Insulating Polymers as Additives to Bulkâ€Heterojunction Organic Solar Cells: The Effect of Miscibility. ChemPhysChem, 2022, 23, .	2.1	20
115	Conjugated polymer with ternary electronâ€deficient units for ambipolar nanowire fieldâ€effect transistors. Journal of Polymer Science Part A, 2016, 54, 34-38.	2.3	19
116	Star-Shaped Electron Acceptor based on Naphthalenediimide-Porphyrin for Non-Fullerene Organic Solar Cells. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2018, 34, 344-347.	4.9	19
117	Synthesis of thiophene-containing conjugated polymers from 2,5-thiophenebis(boronic ester)s by Suzuki polycondensation. Polymer Chemistry, 2013, 4, 895.	3.9	18
118	Poly(pentacyclic lactam-alt-diketopyrrolopyrrole) for field-effect transistors and polymer solar cells processed from non-chlorinated solvents. Polymer Chemistry, 2016, 7, 164-170.	3.9	18
119	Small Band gap Boron Dipyrromethene-Based Conjugated Polymers for All-Polymer Solar Cells: The Effect of Methyl Units. Macromolecules, 2019, 52, 8367-8373.	4.8	18
120	Miscibility ontrolled Phase Separation in Double able Conjugated Polymers for Single omponent Organic Solar Cells with Efficiencies over 8 %. Angewandte Chemie, 2020, 132, 21867-21876.	2.0	18
121	Reprogrammable 3D Liquidâ€Crystalline Actuators with Precisely Controllable Stepwise Actuation. Advanced Intelligent Systems, 2021, 3, 2000249.	6.1	18
122	Quantum Efficiency and Voltage Losses in P3HT: Non-fullerene Solar Cells. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2022, .	4.9	18
123	Tailoring Nanowire Network Morphology and Charge Carrier Mobility of Poly(3-hexylthiophene)/C ₆₀ Films. Journal of Physical Chemistry C, 2009, 113, 11385-11389.	3.1	17
124	Efficient Top-Illuminated Organic-Quantum Dots Hybrid Tandem Solar Cells with Complementary Absorption. ACS Photonics, 2017, 4, 1172-1177.	6.6	17
125	Mechanical-robust and recyclable polyimide substrates coordinated with cyclic Ti-oxo cluster for flexible organic solar cells. Npj Flexible Electronics, 2022, 6, .	10.7	17
126	Ethynyleneâ€containing donor–acceptor alternating conjugated polymers: Synthesis and photovoltaic properties. Journal of Polymer Science Part A, 2013, 51, 383-393.	2.3	16

#	Article	IF	CITATIONS
127	A systematical investigation of non-fullerene solar cells based on diketopyrrolopyrrole polymers as electron donor. Organic Electronics, 2016, 35, 112-117.	2.6	16
128	End Group Engineering on the Side Chains of Conjugated Polymers toward Efficient Non-Fullerene Organic Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 6151-6158.	8.0	16
129	An Organic–Inorganic Hybrid Electrolyte as a Cathode Interlayer for Efficient Organic Solar Cells. Angewandte Chemie, 2021, 133, 8607-8612.	2.0	16
130	Miscibility-Controlled Mechanical and Photovoltaic Properties in Double-Cable Conjugated Polymer/Insulating Polymer Composites. Macromolecules, 2022, 55, 322-330.	4.8	16
131	Synthesis, selfâ€assembly and redoxâ€responsive properties of wellâ€defined hydroxypropylcelluloseâ€ <i>graft</i> â€poly(2â€acryloyloxyethyl ferrocenecarboxylate) copolymers. Polymer International, 2015, 64, 1015-1022.	3.1	15
132	A Wideâ€Bandgap Conjugated Polymer Based on Quinoxalino[6,5â€ <i>f</i>]quinoxaline for Fullerene Nonâ€Fullerene Polymer Solar Cells. Macromolecular Rapid Communications, 2019, 40, e1900120.	and 3.9	15
133	Fullerene as an additive for increasing the efficiency of organic solar cells to more than 17%. Journal of Colloid and Interface Science, 2021, 601, 70-77.	9.4	15
134	Semitransparent Organic Solar Cells based on Non-Fullerene Electron Acceptors. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2020, .	4.9	15
135	Unraveling the Chargeâ€Carrier Dynamics from the Femtosecond to the Microsecond Time Scale in Double able Polymerâ€Based Singleâ€Component Organic Solar Cells. Advanced Energy Materials, 2022, 12, 2103406.	19.5	15
136	Enhancing the performance of non-fullerene solar cells with polymer acceptors containing large-sized aromatic units. Organic Electronics, 2017, 47, 133-138.	2.6	14
137	Diazaisoindigo bithiophene and terthiophene copolymers for application in fieldâ€effect transistors and solar cells. Journal of Polymer Science Part A, 2017, 55, 2691-2699.	2.3	14
138	Correlating crystallinity to photovoltaic performance in single-component organic solar cells via conjugated backbone engineering. Dyes and Pigments, 2019, 170, 107575.	3.7	14
139	A conjugated polymer based on alkylthio-substituted benzo[1,2-c:4,5-c']dithiophene-4,8-dione acceptor for polymer solar cells. Dyes and Pigments, 2019, 165, 335-340.	3.7	14
140	Ti-Oxo Clusters with Peripheral Alkyl Groups as Cathode Interlayers for Efficient Organic Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 39671-39677.	8.0	14
141	Functional Ligand-Decorated ZnO Nanoparticles as Cathode Interlayers for Efficient Organic Solar Cells. ACS Applied Energy Materials, 2022, 5, 1291-1297.	5.1	14
142	Polythiophenes with Carbazole Side Chains: Design, Synthesis and Their Application in Organic Solar Cells. Macromolecular Chemistry and Physics, 2010, 211, 948-955.	2.2	13
143	A Universal Route to Fabricate <i>nâ€iâ€p</i> Multiâ€Junction Polymer Solar Cells via Solution Processing. Solar Rrl, 2018, 2, 1800018.	5.8	13
144	Enhancing the Performance of Small-Molecule Organic Solar Cells via Fused-Ring Design. ACS Applied Materials & Interfaces, 2022, 14, 7093-7101.	8.0	13

#	Article	IF	CITATIONS
145	Revisiting Conjugated Polymers with Long-Branched Alkyl Chains: High Molecular Weight, Excellent Mechanical Properties, and Low Voltage Losses. Macromolecules, 2022, 55, 5964-5974.	4.8	13
146	Performance Enhancement of Polymer Solar Cells by Using Two Polymer Donors with Complementary Absorption Spectra. Macromolecular Rapid Communications, 2015, 36, 1348-1353.	3.9	12
147	Benzothiadiazole-Based Double-Cable Conjugated Polymers for Single-Component Organic Solar Cells with Efficiency over 4%. ACS Applied Polymer Materials, 2021, 3, 4645-4650.	4.4	12
148	Highâ€Performance Indoor Organic Solar Cells Based on a Doubleâ€Cable Conjugated Polymer. Solar Rrl, 2022, 6, .	5.8	12
149	Diketopyrrolopyrroleâ€Porphyrin Based Conjugated Polymers for Ambipolar Fieldâ€Effect Transistors. Chemistry - an Asian Journal, 2017, 12, 1861-1864.	3.3	11
150	Crystalline Cooperativity of Donor and Acceptor Segments in Doubleâ€Cable Conjugated Polymers toward Efficient Singleâ€Component Organic Solar Cells. Angewandte Chemie, 2019, 131, 15678-15686.	2.0	11
151	Double-Cable Conjugated Polymers with Rigid Phenyl Linkers for Single-Component Organic Solar Cells. Macromolecules, 2022, 55, 2517-2523.	4.8	11
152	Nearâ€Infrared Nonfullerene Acceptors Based on 4 <i>H</i> â€Cyclopenta[1,2â€ <i>b</i> :5,4â€ <i>b</i> â€2]dithiophene for Organic Solar Cells and Organic Fieldâ€Effect Transistors. Chemistry - an Asian Journal, 2021, 16, 4171-4178.	3.3	9
153	Superheated high-temperature size-exclusion chromatography with chloroform as the mobile phase for π-conjugated polymers. Polymer Chemistry, 2014, 5, 558-561.	3.9	8
154	Highly Efficient Synthesis of a Ladderâ€Type BNâ€Heteroacene and Polyheteroacene. Asian Journal of Organic Chemistry, 2018, 7, 465-470.	2.7	8
155	TiO2 nanoparticles via simple surface modification as cathode interlayer for efficient organic solar cells. Organic Electronics, 2022, 101, 106422.	2.6	8
156	A Simple, Smallâ€Bandgap Porphyrinâ€Based Conjugated Polymer for Application in Organic Electronics. Macromolecular Rapid Communications, 2018, 39, e1800546.	3.9	7
157	Naphthobistriazole based non-fused electron acceptors for organic solar cells. Journal of Materials Chemistry C, 2022, 10, 8070-8076.	5.5	7
158	Length Effect of Alkyl Linkers on the Crystalline Transition in Naphthalene Diimide-Based Double-Cable Conjugated Polymers. Macromolecules, 2022, 55, 5188-5196.	4.8	7
159	Effects of alkyl side chains of double-cable conjugated polymers on the photovoltaic performance of single-component organic solar cells. Journal of Materials Chemistry C, 2021, 9, 16240-16246.	5.5	6
160	Perylene bisimides-based molecular dyads with different alkyl linkers for single-component organic solar cells. Dyes and Pigments, 2022, 203, 110355.	3.7	6
161	Enhancing the photovoltaic performance of binary acceptor-based conjugated polymers incorporating methyl units. RSC Advances, 2016, 6, 98071-98079.	3.6	5
162	Benzodithiopheneâ€Fused Perylene Bisimides as Electron Acceptors for Nonâ€Fullerene Organic Solar Cells with High Openâ€Circuit Voltage. ChemPhysChem, 2019, 20, 2696-2701.	2.1	5

#	Article	IF	CITATIONS
163	Excited-state photophysical processes in a molecular system containing perylene bisimide and zinc porphyrin chromophores. Physical Chemistry Chemical Physics, 2020, 22, 20891-20900.	2.8	5
164	Surfactant-Encapsulated Polyoxometalate Complex as a Cathode Interlayer for Nonfullerene Polymer Solar Cells. CCS Chemistry, 2022, 4, 975-986.	7.8	5
165	Revealing the Sideâ€Chainâ€Dependent Ordering Transition of Highly Crystalline Double able Conjugated Polymers. Angewandte Chemie, 2021, 133, 25703-25711.	2.0	3
166	Incorporating semiflexible linkers into double-cable conjugated polymers <i>via</i> a click reaction. Polymer Chemistry, 2021, 12, 6865-6872.	3.9	3
167	Contactless charge carrier mobility measurement in organic field-effect transistors. Organic Electronics, 2014, 15, 2855-2861.	2.6	2
168	A Naphthalenediimide-Based Polymer Acceptor with Multidirectional Orientations via Double-Cable Design. Macromolecules, 2020, 53, 9279-9286.	4.8	2
169	Ultrafast Structure and Vibrational Dynamics of a Cyano-Containing Non-Fullerene Acceptor for Organic Solar Cells Revealed by Two-Dimensional Infrared Spectroscopy. Journal of Physical Chemistry B, 2021, 125, 11987-11995.	2.6	2
170	Impact of pendent naphthalenedimide content in random double-cable conjugated polymers on their microstructures and photovoltaic performance. Polymer, 2022, 253, 125020.	3.8	2
171	A CuBr Metal–Organic Framework: From Two Dimensional Net to Quasi-Three Dimensional Frame Through Encapsulated Cu2Br2 Cluster. Journal of Cluster Science, 2020, 31, 1207-1212.	3.3	1
172	Simple Sn-based coordination complex as cathode interlayer for efficient organic solar cells. Organic Electronics, 2022, 108, 106577.	2.6	1
173	Rücktitelbild: An Electron Acceptor with Porphyrin and Perylene Bisimides for Efficient Nonâ€Fullerene Solar Cells (Angew. Chem. 10/2017). Angewandte Chemie, 2017, 129, 2850-2850.	2.0	0
174	Mn2Cl4 Cluster Based Two-Dimensional Coordination Polymer for Dichromate Sensing Property. Journal of Cluster Science, 2021, 32, 235-241.	3.3	0
175	Ultra-stable single component organic solar cells under thermal and/or illumination pressure: the next superior organic photovoltaics?. , 0, , .		0
176	Quantitative Analysis of Charge Dissociation by Selectively Characterizing Exciton Splitting Efficiencies in Single Component Materials. Israel Journal of Chemistry, 0, , .	2.3	0
177	Ultrastable Single-component Material Devices: the Next Frontier for Organic Solar Cells. , 0, , .		0
178	Unraveling the Charge Carrier Dynamics from the Femtosecond to the Microsecond Timescale in Double-cable Polymer-based Single-component Organic Solar Cells. , 0, , .		0
179	Ultrastable single-component organic solar cells: the next frontier towards industrial viability. , 0, , .		0
180	Doubleâ€Cable Conjugated Polymers with Pendent Nearâ€Infrared Electron Acceptors for Singleâ€Component Organic Solar Cells. Angewandte Chemie, 0, , .	2.0	0