## Shuming Nie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5902563/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                       | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Quantum Dot Bioconjugates for Ultrasensitive Nonisotopic Detection. , 1998, 281, 2016-2018.                                                                                                                   |      | 6,494     |
| 2  | In vivo cancer targeting and imaging with semiconductor quantum dots. Nature Biotechnology, 2004, 22, 969-976.                                                                                                | 9.4  | 4,460     |
| 3  | Therapeutic Nanoparticles for Drug Delivery in Cancer. Clinical Cancer Research, 2008, 14, 1310-1316.                                                                                                         | 3.2  | 2,565     |
| 4  | Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nature<br>Biotechnology, 2001, 19, 631-635.                                                                                     | 9.4  | 2,536     |
| 5  | Second window for in vivo imaging. Nature Nanotechnology, 2009, 4, 710-711.                                                                                                                                   | 15.6 | 2,257     |
| 6  | Present and Future of Surface-Enhanced Raman Scattering. ACS Nano, 2020, 14, 28-117.                                                                                                                          | 7.3  | 2,153     |
| 7  | In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags.<br>Nature Biotechnology, 2008, 26, 83-90.                                                                  | 9.4  | 2,107     |
| 8  | Semiconductor Nanocrystals: Structure, Properties, and Band Gap Engineering. Accounts of Chemical<br>Research, 2010, 43, 190-200.                                                                             | 7.6  | 1,517     |
| 9  | In vivo molecular and cellular imaging with quantum dots. Current Opinion in Biotechnology, 2005, 16, 63-72.                                                                                                  | 3.3  | 1,131     |
| 10 | Bioconjugated quantum dots for in vivo molecular and cellular imagingâ~†. Advanced Drug Delivery<br>Reviews, 2008, 60, 1226-1240.                                                                             | 6.6  | 1,067     |
| 11 | Nanotechnology Applications in Cancer. Annual Review of Biomedical Engineering, 2007, 9, 257-288.                                                                                                             | 5.7  | 982       |
| 12 | Diverse Applications of Nanomedicine. ACS Nano, 2017, 11, 2313-2381.                                                                                                                                          | 7.3  | 976       |
| 13 | SERS Nanoparticles in Medicine: From Label-Free Detection to Spectroscopic Tagging. Chemical Reviews, 2015, 115, 10489-10529.                                                                                 | 23.0 | 712       |
| 14 | Single-Molecule and Single-Nanoparticle SERS:Â Examining the Roles of Surface Active Sites and<br>Chemical Enhancement. Journal of Physical Chemistry B, 2002, 106, 311-317.                                  | 1.2  | 663       |
| 15 | Stimuli-responsive clustered nanoparticles for improved tumor penetration and therapeutic efficacy.<br>Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 4164-4169. | 3.3  | 617       |
| 16 | Semiconductor Quantum Dots for Bioimaging and Biodiagnostic Applications. Annual Review of Analytical Chemistry, 2013, 6, 143-162.                                                                            | 2.8  | 559       |
| 17 | Spectroscopic Tags Using Dye-Embedded Nanoparticles and Surface-Enhanced Raman Scattering.<br>Analytical Chemistry, 2003, 75, 6171-6176.                                                                      | 3.2  | 522       |
| 18 | Surface-Enhanced Raman Scattering Active Gold Nanoparticles with Enzyme-Mimicking Activities for<br>Measuring Glucose and Lactate in Living Tissues. ACS Nano, 2017, 11, 5558-5566.                           | 7.3  | 514       |

| #  | Article                                                                                                                                                                                                                                     | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Bioconjugated quantum dots for multiplexed and quantitative immunohistochemistry. Nature<br>Protocols, 2007, 2, 1152-1165.                                                                                                                  | 5.5  | 472       |
| 20 | Smart Superstructures with Ultrahigh pH-Sensitivity for Targeting Acidic Tumor Microenvironment:<br>Instantaneous Size Switching and Improved Tumor Penetration. ACS Nano, 2016, 10, 6753-6761.                                             | 7.3  | 461       |
| 21 | Imaging and Tracking of Tat Peptide-Conjugated Quantum Dots in Living Cells:  New Insights into<br>Nanoparticle Uptake, Intracellular Transport, and Vesicle Shedding. Journal of the American Chemical<br>Society, 2007, 129, 14759-14766. | 6.6  | 458       |
| 22 | Cell-Penetrating Quantum Dots Based on Multivalent and Endosome-Disrupting Surface Coatings.<br>Journal of the American Chemical Society, 2007, 129, 3333-3338.                                                                             | 6.6  | 440       |
| 23 | A systematic examination of surface coatings on the optical and chemical properties of semiconductor quantum dots. Physical Chemistry Chemical Physics, 2006, 8, 3895.                                                                      | 1.3  | 413       |
| 24 | OPTICAL DETECTION OF SINGLE MOLECULES. Annual Review of Biophysics and Biomolecular Structure, 1997, 26, 567-596.                                                                                                                           | 18.3 | 409       |
| 25 | Proton-Sponge Coated Quantum Dots for siRNA Delivery and Intracellular Imaging. Journal of the American Chemical Society, 2008, 130, 9006-9012.                                                                                             | 6.6  | 387       |
| 26 | Efficient Raman Enhancement and Intermittent Light Emission Observed in Single Gold Nanocrystals.<br>Journal of the American Chemical Society, 1999, 121, 9208-9214.                                                                        | 6.6  | 361       |
| 27 | Detection of Circulating Tumor Cells in Human Peripheral Blood Using Surface-Enhanced Raman<br>Scattering Nanoparticles. Cancer Research, 2011, 71, 1526-1532.                                                                              | 0.4  | 327       |
| 28 | Integrated Nanozymes with Nanoscale Proximity for in Vivo Neurochemical Monitoring in Living<br>Brains. Analytical Chemistry, 2016, 88, 5489-5497.                                                                                          | 3.2  | 290       |
| 29 | Stimuli-responsive nanoparticles for targeting the tumor microenvironment. Journal of Controlled Release, 2015, 219, 205-214.                                                                                                               | 4.8  | 271       |
| 30 | Hand-held Spectroscopic Device for In Vivo and Intraoperative Tumor Detection: Contrast<br>Enhancement, Detection Sensitivity, and Tissue Penetration. Analytical Chemistry, 2010, 82, 9058-9065.                                           | 3.2  | 249       |
| 31 | Probing Specific Sequences on Single DNA Molecules with Bioconjugated Fluorescent Nanoparticles.<br>Analytical Chemistry, 2000, 72, 1979-1986.                                                                                              | 3.2  | 248       |
| 32 | Reexamining the Effects of Particle Size and Surface Chemistry on the Magnetic Properties of Iron<br>Oxide Nanocrystals: New Insights into Spin Disorder and Proton Relaxivity. Journal of Physical<br>Chemistry C, 2008, 112, 8127-8131.   | 1.5  | 233       |
| 33 | Screening and Enrichment of Metal Nanoparticles with Novel Optical Properties. Journal of Physical Chemistry B, 1998, 102, 493-497.                                                                                                         | 1.2  | 206       |
| 34 | Quantum dots and multifunctional nanoparticles: new contrast agents for tumor imaging.<br>Nanomedicine, 2006, 1, 209-217.                                                                                                                   | 1.7  | 201       |
| 35 | Minimizing the Hydrodynamic Size of Quantum Dots with Multifunctional Multidentate Polymer Ligands. Journal of the American Chemical Society, 2008, 130, 11278-11279.                                                                       | 6.6  | 193       |
| 36 | Near-Field Surface-Enhanced Raman Spectroscopy on Single Silver Nanoparticles. Analytical Chemistry, 1997, 69, 2631-2635.                                                                                                                   | 3.2  | 181       |

| #  | Article                                                                                                                                                                      | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Next-generation quantum dots. Nature Biotechnology, 2009, 27, 732-733.                                                                                                       | 9.4  | 159       |
| 38 | HFT-T, a Targeting Nanoparticle, Enhances Specific Delivery of Paclitaxel to Folate Receptor-Positive<br>Tumors. ACS Nano, 2009, 3, 3165-3174.                               | 7.3  | 156       |
| 39 | Intraoperative Near-Infrared Imaging Can Identify Pulmonary Nodules. Annals of Thoracic Surgery, 2014, 98, 1223-1230.                                                        | 0.7  | 154       |
| 40 | Molecular Imaging of Pancreatic Cancer in an Animal Model Using Targeted Multifunctional<br>Nanoparticles. Gastroenterology, 2009, 136, 1514-1525.e2.                        | 0.6  | 152       |
| 41 | Physical Chemistry of Nanomedicine: Understanding the Complex Behaviors of Nanoparticles in Vivo.<br>Annual Review of Physical Chemistry, 2015, 66, 521-547.                 | 4.8  | 146       |
| 42 | Molecular Mapping of Tumor Heterogeneity on Clinical Tissue Specimens with Multiplexed Quantum<br>Dots. ACS Nano, 2010, 4, 2755-2765.                                        | 7.3  | 143       |
| 43 | Counting Single Native Biomolecules and Intact Viruses with Color-Coded Nanoparticles. Analytical Chemistry, 2006, 78, 1061-1070.                                            | 3.2  | 140       |
| 44 | Targeted Delivery of Cisplatin to Lung Cancer Using ScFvEGFR-Heparin-Cisplatin Nanoparticles. ACS<br>Nano, 2011, 5, 9480-9493.                                               | 7.3  | 139       |
| 45 | Minimizing Nonspecific Cellular Binding of Quantum Dots with Hydroxyl-Derivatized Surface<br>Coatings. Analytical Chemistry, 2008, 80, 3029-3034.                            | 3.2  | 129       |
| 46 | Active transcytosis and new opportunities for cancer nanomedicine. Nature Materials, 2020, 19, 478-480.                                                                      | 13.3 | 128       |
| 47 | Bioconjugated Nanoparticles for Biosensing, in Vivo Imaging, and Medical Diagnostics. Analytical Chemistry, 2017, 89, 1015-1031.                                             | 3.2  | 120       |
| 48 | Nanostructured Thin-Film Materials with Surface-Enhanced Optical Properties. Chemistry of Materials, 2001, 13, 1082-1088.                                                    | 3.2  | 112       |
| 49 | Aqueous acid-based synthesis of lead-free tin halide perovskites with near-unity photoluminescence<br>quantum efficiency. Chemical Science, 2019, 10, 4573-4579.             | 3.7  | 109       |
| 50 | Intraoperative Near-Infrared Imaging Can Distinguish Cancer from Normal Tissue but Not<br>Inflammation. PLoS ONE, 2014, 9, e103342.                                          | 1.1  | 108       |
| 51 | Multiplexed Detection and Characterization of Rare Tumor Cells in Hodgkin's Lymphoma with<br>Multicolor Quantum Dots. Analytical Chemistry, 2010, 82, 6237-6243.             | 3.2  | 100       |
| 52 | Development of Receptor Targeted Magnetic Iron Oxide Nanoparticles for Efficient Drug Delivery and<br>Tumor Imaging. Journal of Biomedical Nanotechnology, 2008, 4, 439-449. | 0.5  | 99        |
| 53 | Confinement and Detection of Single Molecules in Submicrometer Channels. Analytical Chemistry, 1997, 69, 3400-3405.                                                          | 3.2  | 91        |
| 54 | Real-Time Detection of Virus Particles and Viral Protein Expression with Two-Color Nanoparticle<br>Probes. Journal of Virology, 2005, 79, 8625-8628.                         | 1.5  | 87        |

| #  | Article                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Intraoperative molecular imaging can identify lung adenocarcinomas during pulmonary resection.<br>Journal of Thoracic and Cardiovascular Surgery, 2015, 150, 28-35.e1.                                                               | 0.4 | 86        |
| 56 | Probing Single Molecules in Single Living Cells. Analytical Chemistry, 2000, 72, 5606-5611.                                                                                                                                          | 3.2 | 82        |
| 57 | Targeted Drug Delivery and Image-Guided Therapy of Heterogeneous Ovarian Cancer Using<br>HER2-Targeted Theranostic Nanoparticles. Theranostics, 2019, 9, 778-795.                                                                    | 4.6 | 82        |
| 58 | One-Pot Synthesis, Encapsulation, and Solubilization of Size-Tuned Quantum Dots with Amphiphilic<br>Multidentate Ligands. Journal of the American Chemical Society, 2008, 130, 12866-12867.                                          | 6.6 | 81        |
| 59 | Machine Learning-Assisted Array-Based Biomolecular Sensing Using Surface-Functionalized Carbon<br>Dots. ACS Sensors, 2019, 4, 2730-2737.                                                                                             | 4.0 | 81        |
| 60 | Identification of breast cancer margins using intraoperative nearâ€infrared imaging. Journal of Surgical<br>Oncology, 2016, 113, 508-514.                                                                                            | 0.8 | 74        |
| 61 | Direct Hot-Injection Synthesis of Lead Halide Perovskite Nanocubes in Acrylic Monomers for<br>Ultrastable and Bright Nanocrystal–Polymer Composite Films. ACS Applied Materials & Interfaces,<br>2019, 11, 9317-9325.                | 4.0 | 67        |
| 62 | Single-Bead Immunoassays Using Magnetic Microparticles and Spectral-Shifting Quantum Dots.<br>Journal of Agricultural and Food Chemistry, 2007, 55, 3778-3782.                                                                       | 2.4 | 66        |
| 63 | Comparison of Folate Receptor Targeted Optical Contrast Agents for Intraoperative Molecular<br>Imaging. International Journal of Molecular Imaging, 2015, 2015, 1-10.                                                                | 1.3 | 65        |
| 64 | Efficient and Stable Thinâ€Film Luminescent Solar Concentrators Enabled by Nearâ€Infrared Emission<br>Perovskite Nanocrystals. Angewandte Chemie - International Edition, 2020, 59, 7738-7742.                                       | 7.2 | 64        |
| 65 | Near-infrared fluorescent image-guided surgery for intracranial meningioma. Journal of<br>Neurosurgery, 2018, 128, 380-390.                                                                                                          | 0.9 | 62        |
| 66 | Compact and Blinking-Suppressed Quantum Dots for Single-Particle Tracking in Live Cells. Journal of<br>Physical Chemistry B, 2014, 118, 14140-14147.                                                                                 | 1.2 | 61        |
| 67 | Near-Infrared Intraoperative Molecular Imaging Can Locate Metastases to the Lung. Annals of<br>Thoracic Surgery, 2017, 103, 390-398.                                                                                                 | 0.7 | 59        |
| 68 | Mapping the spatial distribution of charge carriers in quantum-confined heterostructures. Nature<br>Communications, 2014, 5, 4506.                                                                                                   | 5.8 | 57        |
| 69 | Influence of Electron Acceptor and Electron Donor on the Photophysical Properties of Carbon Dots:<br>A Comparative Investigation at the Bulkâ€6tate and Singleâ€Particle Level. Advanced Functional Materials,<br>2019, 29, 1902466. | 7.8 | 57        |
| 70 | Intraoperative fluorescence imaging in thoracic surgery. Journal of Surgical Oncology, 2018, 118, 344-355.                                                                                                                           | 0.8 | 56        |
| 71 | Emergence of two near-infrared windows for in vivo and intraoperative SERS. Current Opinion in Chemical Biology, 2018, 45, 95-103.                                                                                                   | 2.8 | 50        |
| 72 | Optimization of Second Window Indocyanine Green for Intraoperative Near-Infrared Imaging of<br>Thoracic Malignancy. Journal of the American College of Surgeons, 2019, 228, 188-197.                                                 | 0.2 | 45        |

| #  | Article                                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | In vitro study of a pH-sensitive multifunctional doxorubicin–gold nanoparticle system: therapeutic effect and surface enhanced Raman scattering. RSC Advances, 2015, 5, 65651-65659.                                                           | 1.7 | 43        |
| 74 | Quantification of tumor fluorescence during intraoperative optical cancer imaging. Scientific Reports, 2015, 5, 16208.                                                                                                                         | 1.6 | 42        |
| 75 | Small Portable Interchangeable Imager of Fluorescence for Fluorescence Guided Surgery and Research. Technology in Cancer Research and Treatment, 2015, 14, 213-220.                                                                            | 0.8 | 42        |
| 76 | Intraoperative nearâ€infrared fluorescence imaging targeting folate receptors identifies lung cancer in<br>a largeâ€animal model. Cancer, 2017, 123, 1051-1060.                                                                                | 2.0 | 42        |
| 77 | Intraoperative near-infrared fluorescence imaging and spectroscopy identifies residual tumor cells in wounds. Journal of Biomedical Optics, 2015, 20, 076002.                                                                                  | 1.4 | 39        |
| 78 | Intraoperative Molecular Diagnostic Imaging Can Identify Renal Cell Carcinoma. Journal of Urology,<br>2016, 195, 748-755.                                                                                                                      | 0.2 | 37        |
| 79 | An open label trial of folate receptor-targeted intraoperative molecular imaging to localize pulmonary squamous cell carcinomas. Oncotarget, 2018, 9, 13517-13529.                                                                             | 0.8 | 36        |
| 80 | Intraoperative Spectroscopy with Ultrahigh Sensitivity for Image-Guided Surgery of Malignant Brain<br>Tumors. Analytical Chemistry, 2016, 88, 858-867.                                                                                         | 3.2 | 34        |
| 81 | Intraoperative Molecular Imaging of Lung Adenocarcinoma Can Identify Residual Tumor Cells at the<br>Surgical Margins. Molecular Imaging and Biology, 2016, 18, 209-218.                                                                        | 1.3 | 34        |
| 82 | Novel surface-enhanced Raman scattering-based assays for ultra-sensitive detection of human pluripotent stem cells. Biomaterials, 2016, 105, 66-76.                                                                                            | 5.7 | 28        |
| 83 | Hexachromatic bioinspired camera for image-guided cancer surgery. Science Translational Medicine, 2021, 13, .                                                                                                                                  | 5.8 | 27        |
| 84 | Biomimetic Surface-Enhanced Raman Scattering Nanoparticles with Improved Dispersibility, Signal<br>Brightness, and Tumor Targeting Functions. ACS Nano, 2022, 16, 8051-8063.                                                                   | 7.3 | 26        |
| 85 | A Dual-Beam Optical Microscope for Observation and Cleavage of Single DNA Molecules. Analytical<br>Chemistry, 1998, 70, 1743-1748.                                                                                                             | 3.2 | 24        |
| 86 | Functionalized, Long-Circulating, and Ultrasmall Gold Nanocarriers for Overcoming the Barriers of<br>Low Nanoparticle Delivery Efficiency and Poor Tumor Penetration. Bioconjugate Chemistry, 2017, 28,<br>244-252.                            | 1.8 | 24        |
| 87 | An Integrated Widefield Imaging and Spectroscopy System for Contrast-Enhanced, Image-Guided<br>Resection of Tumors. IEEE Transactions on Biomedical Engineering, 2015, 62, 1416-1424.                                                          | 2.5 | 21        |
| 88 | An unusual role of folate in the self-assembly of heparin–folate conjugates into nanoparticles.<br>Nanoscale, 2015, 7, 15185-15190.                                                                                                            | 2.8 | 21        |
| 89 | Ultracompact Iron Oxide Nanoparticles with a Monolayer Coating of Succinylated Heparin: A New<br>Class of Renal-Clearable and Nontoxic T <sub>1</sub> Agents for High-Field MRI. ACS Applied Materials<br>& Interfaces, 2020, 12, 53994-54004. | 4.0 | 20        |
| 90 | Accelerated Digital Biodetection Using Magneto-plasmonic Nanoparticle-Coupled Photonic Resonator<br>Absorption Microscopy. ACS Nano, 2022, 16, 2345-2354.                                                                                      | 7.3 | 19        |

| #   | Article                                                                                                                                                                                                                      | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | The more exotic shapes of semiconductor nanocrystals: emerging applications in bioimaging. Current Opinion in Chemical Engineering, 2014, 4, 137-143.                                                                        | 3.8 | 18        |
| 92  | The bright future: Imaging dynamic cellular events with quantum dots. Biochemist, 2010, 32, 12-17.                                                                                                                           | 0.2 | 17        |
| 93  | Biocompatible hyaluronic acid polymer-coated quantum dots for CD44+ cancer cell-targeted imaging.<br>Journal of Nanoparticle Research, 2014, 16, 1.                                                                          | 0.8 | 15        |
| 94  | Function-adaptive clustered nanoparticles reverse Streptococcus mutans dental biofilm and maintain microbiota balance. Communications Biology, 2021, 4, 846.                                                                 | 2.0 | 13        |
| 95  | Rational Design of Surface-State Controlled Multicolor Cross-Linked Carbon Dots with Distinct<br>Photoluminescence and Cellular Uptake Properties. ACS Applied Materials & Interfaces, 2021, 13,<br>59747-59760.             | 4.0 | 13        |
| 96  | Near-infrared Intraoperative Molecular Imaging Can Identify Metastatic Lymph Nodes in Prostate<br>Cancer. Urology, 2017, 106, 133-138.                                                                                       | 0.5 | 11        |
| 97  | Quantum Dot Nanocrystals for <i>In Vivo</i> Molecular and Cellular Imaging <sup>¶</sup> .<br>Photochemistry and Photobiology, 2004, 80, 377-385.                                                                             | 1.3 | 9         |
| 98  | Quantitative Examination of the Active Targeting Effect: The Key Factor for Maximal Tumor<br>Accumulation and Retention of Short-Circulated Biopolymeric Nanocarriers. Bioconjugate Chemistry,<br>2017, 28, 1351-1355.       | 1.8 | 8         |
| 99  | Evaluation of Aminolevulinic Acid-Derived Tumor Fluorescence Yields Disparate Results in Murine and Spontaneous Large Animal Models of Lung Cancer. Scientific Reports, 2019, 9, 7629.                                       | 1.6 | 8         |
| 100 | Efficient and Stable Thinâ€Film Luminescent Solar Concentrators Enabled by Nearâ€Infrared Emission<br>Perovskite Nanocrystals. Angewandte Chemie, 2020, 132, 7812-7816.                                                      | 1.6 | 6         |
| 101 | Raman-Guided Bronchoscopy: Feasibility and Detection Depth Studies Using Ex Vivo Lung Tissues and SERS Nanoparticle Tags. Photonics, 2022, 9, 429.                                                                           | 0.9 | 6         |
| 102 | Succinylated heparin monolayer coating vastly increases superparamagnetic iron oxide nanoparticle<br><i>T</i> <sub>2</sub> proton relaxivity. Nanoscale, 2019, 11, 12905-12914.                                              | 2.8 | 5         |
| 103 | Biomedical nanotechnology for molecular imaging, diagnostics, and targeted therapy. , 2009, 2009, 4578-9.                                                                                                                    |     | 4         |
| 104 | Encapsulating maytansinoid in pH-sensitive nanocarriers: The importance of using extremely potent<br>cytotoxic agents and fast release for nanomedicine to achieve tumor elimination. Nano Research, 2019,<br>12, 1959-1966. | 5.8 | 4         |
| 105 | Combination of an Integrin-Targeting NIR Tracer and an Ultrasensitive Spectroscopic Device for<br>Intraoperative Detection of Head and Neck Tumor Margins and Metastatic Lymph Nodes. Tomography,<br>2016, 2, 215-222.       | 0.8 | 4         |
| 106 | Nanoparticle Probes for Ultrasensitive Biological Detection and Imaging. , 0, , 71-89.                                                                                                                                       |     | 3         |
| 107 | Integrating Magnetic and Optical Nanotechnology for Selective Capture and Multiplexed Analysis of<br>Rare Tumor Cells. , 2007, , .                                                                                           |     | 2         |
| 108 | Remembering Dr. Richard P. Van Duyne (1945–2019): Gentleman, Scholar, and Surface-Enhanced Raman<br>Scattering Pioneer. ACS Nano, 2020, 14, 26-27.                                                                           | 7.3 | 2         |

| #   | Article                                                                                                                                                                             | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Luminescent Quantum Dots for Biological Labeling. , 2005, , 343-352.                                                                                                                |     | 1         |
| 110 | Bioconjugated Nanoparticles for Ultrasensitive Detection of Molecular Biomarkers and Infectious Agents. , 0, , 207-222.                                                             |     | 1         |
| 111 | Quantum Dots for Multiplexed Molecular Profiling of Cancer Cells and Tissue Specimens. Conference<br>Proceedings - Lasers and Electro-Optics Society Annual Meeting-LEOS, 2007, , . | 0.0 | 1         |
| 112 | Probing Single Molecules in Single Living Cells. Microscopy and Microanalysis, 2001, 7, 28-29.                                                                                      | 0.2 | 0         |