Jean-Luc Montchamp

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5902113/publications.pdf

Version: 2024-02-01

50 papers

2,738 citations

28 h-index 197818 49 g-index

52 all docs 52 docs citations

times ranked

52

1770 citing authors

#	Article	IF	CITATIONS
1	Phosphinate Chemistry in the 21st Century: A Viable Alternative to the Use of Phosphorus Trichloride in Organophosphorus Synthesis Accounts of Chemical Research, 2014, 47, 77-87.	15.6	343
2	Triethylborane-Initiated Room Temperature Radical Addition of Hypophosphites to Olefins:  Synthesis of Monosubstituted Phosphinic Acids and Esters. Journal of Organic Chemistry, 2001, 66, 6745-6755.	3.2	143
3	Revisiting the Hirao cross-coupling: improved synthesis of aryl and heteroaryl phosphonates. Journal of Organometallic Chemistry, 2008, 693, 3171-3178.	1.8	133
4	Phosphorusâ€Carbon Bond Formation: Palladiumâ€Catalyzed Crossâ€Coupling of <i>H</i> â€Phosphinates and Other P(O)Hâ€Containing Compounds. Advanced Synthesis and Catalysis, 2013, 355, 1361-1373.	4.3	129
5	Palladium-Catalyzed Hydrophosphinylation of Alkenes and Alkynes. Journal of the American Chemical Society, 2002, 124, 9386-9387.	13.7	128
6	Palladium-Catalyzed Cross-Coupling of <i>H</i> -Phosphinate Esters with Chloroarenes. Organic Letters, 2011, 13, 3270-3273.	4.6	123
7	Synthesis of Monosubstituted Phosphinic Acids:Â Palladium-Catalyzed Cross-Coupling Reactions of Anilinium Hypophosphite. Journal of the American Chemical Society, 2001, 123, 510-511.	13.7	115
8	P(â•O)H to P–OH Tautomerism: A Theoretical and Experimental Study. Journal of Organic Chemistry, 2015, 80, 10025-10032.	3.2	114
9	Recent advances in phosphorus–carbon bond formation: synthesis of H-phosphinic acid derivatives from hypophosphorous compounds. Journal of Organometallic Chemistry, 2005, 690, 2388-2406.	1.8	107
10	A General Strategy for the Synthesis of Pâ€Stereogenic Compounds. Angewandte Chemie - International Edition, 2013, 52, 11377-11380.	13.8	98
11	NiCl2-Catalyzed Hydrophosphinylation. Journal of Organic Chemistry, 2005, 70, 4064-4072.	3.2	81
12	Palladium-catalyzed phosphorus–carbon bond formation: cross-coupling reactions of alkyl phosphinates with aryl, heteroaryl, alkenyl, benzylic, and allylic halides and triflates. Tetrahedron, 2005, 61, 6315-6329.	1.9	77
13	Palladium-Catalyzed Reactions of Hypophosphorous Compounds with Allenes, Dienes, and Allylic Electrophiles:  Methodology for the Synthesis of Allylic <i>H</i> Phosphinates. Journal of Organic Chemistry, 2008, 73, 2292-2301.	3.2	7 5
14	Environmentally Benign Synthesis of H-Phosphinic Acids Using a Water-Tolerant, Recyclable Polymer-Supported Catalyst. Organic Letters, 2004, 6, 3805-3808.	4.6	70
15	A novel approach to phosphonic acids from hypophosphorous acid. Tetrahedron Letters, 2007, 48, 5755-5759.	1.4	60
16	Manganeseâ€Mediated Intermolecular Arylation of <i>H</i> â€Phosphinates and Related Compounds. Chemistry - A European Journal, 2014, 20, 12385-12388.	3.3	55
17	Orthosilicate-Mediated Esterification of Monosubstituted Phosphinic Acids. Organic Letters, 2000, 2, 3341-3344.	4.6	52
18	Allylic Phosphinates via Palladium-Catalyzed Allylation of H-Phosphinic Acids with Allylic Alcohols. Organic Letters, 2008, 10, 1123-1126.	4.6	52

#	Article	IF	Citations
19	Hydrophosphinylation of Unactivated Terminal Alkenes Catalyzed by Nickel Chloride. Journal of Organic Chemistry, 2013, 78, 6599-6608.	3.2	52
20	Palladium-Catalyzed Dehydrative Allylation of Hypophosphorous Acid with Allylic Alcohols. Organic Letters, 2006, 8, 4169-4171.	4.6	51
21	Manganeseâ€Catalyzed and Promoted Reactions of <i>H</i> â€Phosphinate Esters. Advanced Synthesis and Catalysis, 2014, 356, 1199-1204.	4.3	51
22	A novel and convenient preparation of hypophosphite esters. Journal of Organometallic Chemistry, 2002, 643-644, 154-163.	1.8	49
23	Green, Palladiumâ€Catalyzed Synthesis of Benzylic <i>H</i> à€Phosphinates from Hypophosphorous Acid and Benzylic Alcohols. European Journal of Organic Chemistry, 2008, 2008, 4101-4103.	2.4	43
24	Routes to calcified porous silicon: implications for drug delivery and biosensing. Physica Status Solidi A, 2003, 197, 336-339.	1.7	42
25	Palladium-catalyzed cross-coupling reaction of anilinium hypophosphite with alkenyl bromides and triflates: application to the synthesis of GABA analogs. Journal of Organometallic Chemistry, 2002, 653, 252-260.	1.8	41
26	DBU-promoted alkylation of alkyl phosphinates and H-phosphonates. Tetrahedron Letters, 2012, 53, 5000-5003.	1.4	38
27	A Mild Synthetic Route to Zinc, Cadmium, and Silver Polymers with (2-Pyridyl)phosphonic Acid: Synthesis and Analysis. European Journal of Inorganic Chemistry, 2008, 2008, 463-470.	2.0	37
28	General synthesis of P-stereogenic compounds: the menthyl phosphinate approach. Organic and Biomolecular Chemistry, 2016, 14, 7552-7562.	2.8	32
29	Strategies for the asymmetric synthesis of H-phosphinate esters. Organic and Biomolecular Chemistry, 2010, 8, 5541.	2.8	29
30	Organophosphorus Synthesis Without Phosphorus Trichloride: The Case for the Hypophosphorous Pathway. Phosphorus, Sulfur and Silicon and the Related Elements, 2013, 188, 66-75.	1.6	27
31	Synthesis of Disubstituted Phosphinates <i>via</i> Palladiumâ€Catalyzed Hydrophosphinylation of <i>H</i> â€Phosphinic Acids. Advanced Synthesis and Catalysis, 2011, 353, 1883-1888.	4.3	25
32	Chemistry of the Versatile (Hydroxymethyl)phosphinyl P(O)CH ₂ OH Functional Group. Organic Letters, 2012, 14, 3404-3407.	4.6	24
33	Manganese-Catalyzed and Mediated Synthesis of Arylphosphinates and Related Compounds. Journal of Organic Chemistry, 2019, 84, 9239-9256.	3.2	23
34	Challenges and solutions in phosphinate chemistry. Pure and Applied Chemistry, 2019, 91, 113-120.	1.9	22
35	Temporary Protection of <i>H</i> â€Phosphinic Acids as a Synthetic Strategy. European Journal of Organic Chemistry, 2009, 2009, 4646-4654.	2.4	21
36	Phosphinate-containing heterocycles: A mini-review. Beilstein Journal of Organic Chemistry, 2014, 10, 732-740.	2.2	20

#	Article	IF	Citations
37	Organophosphorus Chemistry without PCl ₃ : A Bridge from Hypophosphorous Acid to Hâ€Phosphonate Diesters. European Journal of Organic Chemistry, 2013, 2013, 7973-7978.	2.4	19
38	Structural Analogues of Bioactive Phosphonic Acids: First Crystal Structure Characterization of Phosphonothioic and Boranophosphonic Acids. Phosphorus, Sulfur and Silicon and the Related Elements, 2008, 183, 2214-2228.	1.6	16
39	Silver-free synthesis of nitrate-containing room-temperature ionic liquids. New Journal of Chemistry, 2011, 35, 909.	2.8	16
40	On the cost of academic methodologies. Organic Chemistry Frontiers, 2019, 6, 2095-2108.	4.5	14
41	A Facile Synthesis and Crystallographic Analysis of Seven Trityl Phosphorus Compounds and Two Nickel(II) Phosphine Side-Products. Journal of Chemical Crystallography, 2009, 39, 337-347.	1.1	13
42	Manganeseâ€Mediated Homolytic Aromatic Substitution with Phosphinylidenes. Chemical Record, 2017, 17, 1203-1212.	5.8	13
43	Carbon–Hydrogen to Carbon–Phosphorus Transformations. Topics in Current Chemistry, 2014, 361, 217-252.	4.0	9
44	Palladium-Catalyzed Allylation/Benzylation of H-Phosphinate Esters with Alcohols. Molecules, 2016, 21, 1295.	3.8	9
45	Development of a New Family of Chiral Auxiliaries. Organic Letters, 2015, 17, 1819-1821.	4.6	7
46	5-Pyrimidyl phosphonic acid as a building block for the synthesis of coordination polymers. CrystEngComm, 2008, 10, 1372.	2.6	6
47	Synthesis of <i>P</i> -Substituted 5- and 6-Membered Benzo-Phostams: 2,3-Dihydro-1 <i>H</i> -1,2-benzazaphosphole 2-Oxides and 2,3-Tetrahydro-1 <i>H</i> -1,2-benzazaphosphinine 2-Oxides. Journal of Organic Chemistry, 2021, 86, 14684-14694.	3.2	6
48	Evaluation and Development of Methodologies for the Synthesis of Thiophosphinic Acids. Journal of Organic Chemistry, 2020, 85, 14545-14558.	3.2	5
49	Synthesis of Adamantyl Hâ€Phosphinate Esters. European Journal of Organic Chemistry, 0, , .	2.4	2
50	Synthesis of Carbon―and Nitrogen‧ubstituted 5―and 6â€Membered Benzoâ€Phostams. European Journal of Companic Chemistry, 0, , .	of 2.4	1