
Ivan Kristianto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5902012/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Production of Dimethylfuran from Hydroxymethylfurfural through Catalytic Transfer Hydrogenation with Ruthenium Supported on Carbon. ChemSusChem, 2013, 6, 1158-1162.	6.8	247
2	Overview of the recent advances in lignocellulose liquefaction for producing biofuels, bio-based materials and chemicals. Bioresource Technology, 2019, 279, 373-384.	9.6	175
3	Effective depolymerization of concentrated acid hydrolysis lignin using a carbon-supported ruthenium catalyst in ethanol/formic acid media. Bioresource Technology, 2017, 234, 424-431.	9.6	79
4	Efficient depolymerization of lignin in supercritical ethanol by a combination of metal and base catalysts. Journal of Industrial and Engineering Chemistry, 2018, 57, 45-54.	5.8	79
5	Catalytic transfer hydrogenation/hydrogenolysis of guaiacol to cyclohexane over bimetallic RuRe/C catalysts. Catalysis Communications, 2016, 86, 113-118.	3.3	78
6	Catalytic pyrolysis of lignin using a two-stage fixed bed reactor comprised of in-situ natural zeolite and ex-situ HZSM-5. Journal of Analytical and Applied Pyrolysis, 2016, 122, 282-288.	5.5	74
7	Hydro- and solvothermolysis of kraft lignin for maximizing production of monomeric aromatic chemicals. Bioresource Technology, 2016, 203, 142-149.	9.6	63
8	Production of renewable p-xylene from 2,5-dimethylfuran via Diels–Alder cycloaddition and dehydrative aromatization reactions over silicaâ^alumina aerogel catalysts. Catalysis Communications, 2015, 70, 12-16.	3.3	60
9	Investigation into the lignin decomposition mechanism by analysis of the pyrolysis product of Pinus radiata. Bioresource Technology, 2016, 219, 371-377.	9.6	59
10	Production of renewable toluene from biomass-derived furans via Diels-Alder and dehydration reactions: A comparative study of Lewis acid catalysts. Fuel, 2016, 182, 588-596.	6.4	55
11	High-quality and phenolic monomer-rich bio-oil production from lignin in supercritical ethanol over synergistic Ru and Mg-Zr-oxide catalysts. Chemical Engineering Journal, 2020, 396, 125175.	12.7	34
12	Hydrothermal Liquefaction of Concentrated Acid Hydrolysis Lignin in a Bench-Scale Continuous Stirred Tank Reactor. Energy & Fuels, 2019, 33, 6421-6428.	5.1	20
13	Direct conversion of lignin to high-quality biofuels by carbon dioxide-assisted hydrolysis combined with transfer hydrogenolysis over supported ruthenium catalysts. Energy Conversion and Management, 2022, 261, 115607.	9.2	14
14	Diels–Alder Cycloaddition of Biomass-Derived 2,5-Dimethylfuran and Ethylene over Sulfated and Phosphated Metal Oxides for Renewable p-Xylene. Catalysts, 2021, 11, 1074.	3.5	8
15	Hydrothermal Decomposition of Glucose in the Presence of Ammonium. Industrial & Engineering Chemistry Research, 2021, 60, 10129-10138.	3.7	4