Xiao Ge

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5901612/publications.pdf

Version: 2024-02-01

		1039880	1281743
11	880	9	11
papers	citations	h-index	g-index
11	11	11	1533
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	3D graphene/l̂-MnO ₂ aerogels for highly efficient and reversible removal of heavy metal ions. Journal of Materials Chemistry A, 2016, 4, 1970-1979.	5.2	257
2	\hat{l}^2 -FeOOH Nanorods/Carbon Foam-Based Hierarchically Porous Monolith for Highly Effective Arsenic Removal. ACS Applied Materials & Emp; Interfaces, 2017, 9, 13480-13490.	4.0	143
3	Hierarchical iron containing \hat{I}^3 -MnO 2 hollow microspheres: A facile one-step synthesis and effective removal of As(III) via oxidation and adsorption. Chemical Engineering Journal, 2016, 301, 139-148.	6.6	106
4	Shrimp-shell derived carbon nanodots as carbon and nitrogen sources to fabricate three-dimensional N-doped porous carbon electrocatalysts for the oxygen reduction reaction. Physical Chemistry Chemical Physics, 2016, 18, 4095-4101.	1.3	97
5	In situ growth of α-Fe ₂ O ₃ nanorod arrays on 3D carbon foam as an efficient binder-free electrode for highly sensitive and specific determination of nitrite. Journal of Materials Chemistry A, 2017, 5, 4726-4736.	5.2	86
6	Europium-based infinite coordination polymer nanospheres as an effective fluorescence probe for phosphate sensing. RSC Advances, 2017, 7, 8661-8669.	1.7	62
7	Fabrication of hierarchical iron-containing MnO ₂ hollow microspheres assembled by thickness-tunable nanosheets for efficient phosphate removal. Journal of Materials Chemistry A, 2016, 4, 14814-14826.	5.2	60
8	A three-dimensional porous Co@C/carbon foam hybrid monolith for exceptional oil–water separation. Nanoscale, 2019, 11, 12161-12168.	2.8	33
9	Hollow mesoporous SiO ₂ sphere nanoarchitectures with encapsulated silver nanoparticles for catalytic reduction of 4-nitrophenol. Inorganic Chemistry Frontiers, 2016, 3, 663-670.	3.0	27
10	A 3D porous carbon foam loaded with Fe3O4/graphene oxide for highly effective As(iii) removal. New Journal of Chemistry, 2020, 44, 12926-12931.	1.4	5
11	Enhanced Cr(<scp>vi</scp>) removal by hierarchical CoFe ₂ O ₄ @SiO ₂ –NH ₂ <i>via</i> reduction and adsorption processes. New Journal of Chemistry, 2022, 46, 13686-13692.	1.4	4