John Carlos Garza

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5901424/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Detection of reduction in population size using data from microsatellite loci. Molecular Ecology, 2001, 10, 305-318.	2.0	1,385
2	Microsatellite allele frequencies in humans and chimpanzees, with implications for constraints on allele size Molecular Biology and Evolution, 1995, 12, 594-603.	3.5	281
3	The Power of Single-Nucleotide Polymorphisms for Large-Scale Parentage Inference. Genetics, 2006, 172, 2567-2582.	1.2	236
4	Sex-dependent dominance maintains migration supergene in rainbow trout. Nature Ecology and Evolution, 2019, 3, 1731-1742.	3.4	188
5	Development of a Standardized DNA Database for Chinook Salmon. Fisheries, 2007, 32, 540-552.	0.6	162
6	Differentiating salmon populations at broad and fine geographical scales with microsatellites and single nucleotide polymorphisms. Molecular Ecology, 2008, 17, 3464-3477.	2.0	147
7	Rapid parallel evolution of standing variation in a single, complex, genomic region is associated with life history in steelhead/rainbow trout. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20140012.	1.2	140
8	Microhaplotypes provide increased power from shortâ€read <scp>DNA</scp> sequences for relationship inference. Molecular Ecology Resources, 2018, 18, 296-305.	2.2	101
9	Homoplasy for size at microsatellite loci in humans and chimpanzees Genome Research, 1996, 6, 211-217.	2.4	99
10	Over the Falls? Rapid Evolution of Ecotypic Differentiation in Steelhead/Rainbow Trout (Oncorhynchus mykiss). Journal of Heredity, 2009, 100, 515-525.	1.0	84
11	A comparison of variability and population structure for major histocompatibility complex and microsatellite loci in California coastal steelhead (<i>Oncorhynchus mykiss</i> Walbaum). Molecular Ecology, 2006, 15, 923-937.	2.0	81
12	Low Genetic Variability in the Highly Endangered Mediterranean Monk Seal. , 2004, 95, 291-300.		65
13	Largeâ€scale parentage analysis reveals reproductive patterns and heritability of spawn timing in a hatchery population of steelhead (<i><scp>O</scp>ncorhynchus mykiss</i>). Molecular Ecology, 2013, 22, 4733-4746.	2.0	65
14	A complex phenotype in salmon controlled by a simple change in migratory timing. Science, 2020, 370, 609-613.	6.0	65
15	Population structure and genetic diversity of trout (Oncorhynchus mykiss) above and below natural and man-made barriers in the Russian River, California. Conservation Genetics, 2007, 8, 437-454.	0.8	62
16	Ancestry and adaptive evolution of anadromous, resident, and adfluvial rainbow trout (<i>Oncorhynchus mykiss</i>) in the San Francisco bay area: application of adaptive genomic variation to conservation in a highly impacted landscape. Evolutionary Applications, 2017, 10, 56-67.	1.5	60
17	A phylogenetic study of the gibbons (Hylobates) using DNA obtained noninvasively from hair. Molecular Phylogenetics and Evolution, 1992, 1, 202-210.	1.2	55
18	Population genetic structure and ancestry of Oncorhynchus mykiss populations above and below dams in south-central California. Conservation Genetics, 2009, 10, 1321-1336.	0.8	52

JOHN CARLOS GARZA

#	Article	IF	CITATIONS
19	Divergent life-history races do not represent Chinook salmon coast-wide: the importance of scale in Quaternary biogeography. Canadian Journal of Fisheries and Aquatic Sciences, 2013, 70, 415-435.	0.7	50
20	Shifting Thresholds: Rapid Evolution of Migratory Life Histories in Steelhead/Rainbow Trout, <i>Oncorhynchus mykiss</i> . Journal of Heredity, 2016, 107, 51-60.	1.0	46
21	Evaluation of a single nucleotide polymorphism baseline for genetic stock identification of Chinook Salmon (Oncorhynchus tshawytscha) in the California Current large marine ecosystem. Fishery Bulletin, 2014, 112, 112-130.	0.1	45
22	Rapid adaptive evolution of the diapause program during range expansion of an invasive mosquito. Evolution; International Journal of Organic Evolution, 2020, 74, 1451-1465.	1.1	44
23	Dispersal of a nearshore marine fish connects marine reserves and adjacent fished areas along an open coast. Molecular Ecology, 2019, 28, 1611-1623.	2.0	40
24	Discovery and characterization of singleâ€nucleotide polymorphisms in steelhead/rainbow trout, <i>Oncorhynchus mykiss</i> . Molecular Ecology Resources, 2011, 11, 31-49.	2.2	39
25	Kinship analyses identify fish dispersal events on a temperate coastline. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20140556.	1.2	39
26	Stock composition and ocean spatial distribution inference from California recreational Chinook salmon fisheries using genetic stock identification. Fisheries Research, 2015, 170, 166-178.	0.9	39
27	Conservation of Native Pacific Trout Diversity in Western North America. Fisheries, 2016, 41, 286-300.	0.6	39
28	Demographic history shaped geographical patterns of deleterious mutation load in a broadly distributed Pacific Salmon. PLoS Genetics, 2020, 16, e1008348.	1.5	38
29	A Microsatellite Genome Screen Identifies Chromosomal Regions under Differential Selection in Steelhead and Rainbow Trout. Transactions of the American Fisheries Society, 2011, 140, 829-842.	0.6	37
30	Patterns of Historical Balancing Selection on the Salmonid Major Histocompatibility Complex Class II β Gene. Journal of Molecular Evolution, 2007, 65, 34-43.	0.8	35
31	Use of Genetic Stock Identification Data for Comparison of the Ocean Spatial Distribution, Size at Age, and Fishery Exposure of an Untagged Stock and Its Indicator: California Coastal versus Klamath River Chinook Salmon. Transactions of the American Fisheries Society, 2014, 143, 117-133.	0.6	34
32	Should I Stay or Should I Go? The Influence of Genetic Origin on Emigration Behavior and Physiology of Resident and Anadromous JuvenileOncorhynchus mykiss. North American Journal of Fisheries Management, 2012, 32, 772-780.	0.5	31
33	Temporal recruitment patterns and gene flow in kelp rockfish (Sebastes atrovirens). Molecular Ecology, 2006, 15, 3801-3815.	2.0	30
34	Disruption of historical patterns of isolation by distance in coastal steelhead. Conservation Genetics, 2011, 12, 691-700.	0.8	30
35	Discovery and characterization of single nucleotide polymorphisms in Chinook salmon, <i>Oncorhynchus tshawytscha</i> . Molecular Ecology Resources, 2011, 11, 50-66.	2.2	29
36	Heterogeneous genetic basis of age at maturity in salmonid fishes. Molecular Ecology, 2021, 30, 1435-1456.	2.0	29

JOHN CARLOS GARZA

#	Article	IF	CITATIONS
37	Population genetic structure and ancestry of steelhead/rainbow trout (Oncorhynchus mykiss) at the extreme southern edge of their range in North America. Conservation Genetics, 2016, 17, 675-689.	0.8	28
38	Population genetics of steelhead (Oncorhynchus mykiss) in the Klamath River. Environmental Biology of Fishes, 2007, 80, 377-387.	0.4	25
39	Population Structure of Steelhead in Coastal California. Transactions of the American Fisheries Society, 2014, 143, 134-152.	0.6	25
40	Genetic and life-history consequences of extreme climate events. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20162118.	1.2	23
41	Genetic Structure of Pacific Trout at the Extreme Southern End of Their Native Range. PLoS ONE, 2015, 10, e0141775.	1.1	20
42	Isolation of 15 single nucleotide polymorphisms from coastal steelhead, Oncorhynchus mykiss (Salmonidae). Molecular Ecology Resources, 2008, 8, 659-662.	2.2	19
43	Parallel evolution of the summer steelhead ecotype in multiple populations from Oregon and Northern California. Conservation Genetics, 2016, 17, 165-175.	0.8	17
44	Molecular Population Genetics of the Northern Elephant Seal Mirounga angustirostris. Journal of Heredity, 2017, 108, 618-627.	1.0	16
45	Identification of Northeastern Pacific Rockfish Using Multilocus Nuclear DNA Genotypes. Transactions of the American Fisheries Society, 2007, 136, 272-280.	0.6	14
46	Longâ€distance migration is a major factor driving local adaptation at continental scale in Coho salmon. Molecular Ecology, 2023, 32, 542-559.	2.0	14
47	Hybridization between Spring―and Fallâ€Run Chinook Salmon Returning to the Trinity River, California. North American Journal of Fisheries Management, 2008, 28, 1426-1438.	0.5	13
48	Genetic structure and different color morphotypes suggest the occurrence and bathymetric segregation of two incipient species of Sebastes off Argentina. Die Naturwissenschaften, 2013, 100, 645-658.	0.6	13
49	Discovery and characterization of single nucleotide polymorphisms in coho salmon, <i>Oncorhynchus kisutch</i> . Molecular Ecology Resources, 2016, 16, 277-287.	2.2	13
50	You Can't Unscramble an Egg: Population Genetic Structure of <i>Oncorhynchus mykiss</i> in the California Central Valley Inferred from Combined Microsatellite and Single Nucleotide Polymorphism Data. San Francisco Estuary and Watershed Science, 2015, 13, .	0.2	12
51	Early ocean distribution of juvenile Chinook salmon in an upwelling ecosystem. Fisheries Oceanography, 2016, 25, 133-146.	0.9	12
52	Discovery and characterization of single nucleotide polymorphisms in two anadromous alosine fishes of conservation concern. Ecology and Evolution, 2017, 7, 6638-6648.	0.8	12
53	Hierarchical Phylogeographic Structure of Coho Salmon in California. Transactions of the American Fisheries Society, 2016, 145, 1122-1138.	0.6	11
54	Comprehensive evaluation of genetic population structure for anadromous river herring with single nucleotide polymorphism data. Fisheries Research, 2018, 206, 247-258.	0.9	11

JOHN CARLOS GARZA

#	Article	IF	CITATIONS
55	Restorationâ€mediated secondary contact leads to introgression of alewife ecotypes separated by a colonialâ€era dam. Evolutionary Applications, 2020, 13, 652-664.	1.5	10
56	Contemporary Population Structure in Klamath River Basin Chinook Salmon Revealed by Analysis of Microsatellite Genetic Data. Transactions of the American Fisheries Society, 2013, 142, 1347-1357.	0.6	9
57	Cryptic population structure in the severely depleted cowcod, <i>Sebastes levis</i> . Canadian Journal of Fisheries and Aquatic Sciences, 2014, 71, 81-92.	0.7	7
58	Polygenic Basis and the Role of Genome Duplication in Adaptation to Similar Selective Environments. Journal of Heredity, 2021, 112, 614-625.	1.0	7
59	Crested gibbon (Hylobates [Nomascus]) identification using noninvasively obtained DNA. Zoo Biology, 1994, 13, 383-387.	0.5	6
60	Identification of multiple genetically distinct populations of Chinook salmon (Oncorhynchus) Tj ETQq0 0 0 rgBT	Överlock	10 ₄ Tf 50 542
61	Effects of species invasion on population dynamics, vital rates and life histories of the native species. Population Ecology, 2019, 61, 25-34.	0.7	4
62	Differences in growth and condition of juvenile <i>Oncorhynchus mykiss</i> related to sex and a migration-associated genomic region. Canadian Journal of Fisheries and Aquatic Sciences, 2021, 78, 322-331.	0.7	4
63	Genetic assignment of fisheries bycatch reveals disproportionate mortality among Alaska Northern Fulmar breeding colonies. Evolutionary Applications, 2022, 15, 447-458.	1.5	4
64	Derivation of a simple microsatellite locus from a compound ancestor in the genus Mus. Mammalian Genome, 2000, 11, 1117-1122.	1.0	3
65	Patterns of Historical Balancing Selection on the Salmonid Major Histocompatibility Complex Class II Beta Gene. Journal of Molecular Evolution, 2007, 65, 34.	0.8	3
66	Population genetics and species distribution modeling highlight conservation needs of the endemic trout from the Northern Sierra Madre Occidental. Conservation Genetics, 2021, 22, 629-643.	0.8	2
67	Anadromy Redux? Genetic Analysis to Inform Development of an Indigenous American River Steelhead Broodstock. Journal of Fish and Wildlife Management, 2019, 10, 137-147.	0.4	2
68	Growth of juvenile black rockfish (Sebastes melanops) during estuarine residence. Environmental	0.4	0

Biology of Fishes, 2021, 104, 851-865. 68