Ajay Kohli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5901375/publications.pdf

Version: 2024-02-01

136950 155660 4,561 65 32 55 citations h-index g-index papers 67 67 67 5114 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	A droughtâ€responsive rice amidohydrolase is the elusive plant guanine deaminase with the potential to modulate the epigenome. Physiologia Plantarum, 2021, 172, 1853-1866.	5.2	2
2	Genetic factors enhancing seed longevity in tropical japonica rice. Current Plant Biology, 2021, 26, 100196.	4.7	13
3	Systems-based rice improvement approaches for sustainable food and nutritional security. Plant Cell Reports, 2021, 40, 2021-2036.	5.6	19
4	Rice Protoplast Isolation and Transfection for Transient Gene Expression Analysis. Methods in Molecular Biology, 2021, 2238, 313-324.	0.9	7
5	Scaling Climate-Smart Agriculture Through Interdisciplinary Research-for-Development: Learning from South and Southeast Asia's Rice-Based Systems. , 2021, , 1-16.		O
6	Scaling Climate-Smart Agriculture Through Interdisciplinary Research-for-Development: Learning from South and Southeast Asia's Rice-Based Systems. , 2021, , 1187-1202.		0
7	Steady agronomic and genetic interventions are essential for sustaining productivity in intensive rice cropping. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	13
8	Comparative Transcriptomics and Co-Expression Networks Reveal Tissue- and Genotype-Specific Responses of qDTYs to Reproductive-Stage Drought Stress in Rice (Oryza sativa L.). Genes, 2020, 11, 1124.	2.4	13
9	Sustainable agriculture for health and prosperity: stakeholders' roles, legitimacy and <i>modus operandi</i> . Development in Practice, 2020, 30, 965-971.	1.3	9
10	Advanced Strategic Research to Promote the Use of Rice Genetic Resources. Agronomy, 2020, 10, 1629.	3.0	7
11	Photosynthesis research: a model to bridge fundamental science, translational products, and socio-economic considerations in agriculture. Journal of Experimental Botany, 2020, 71, 2281-2298.	4.8	17
12	Trans-Disciplinary Responses to Climate Change: Lessons from Rice-Based Systems in Asia. Climate, 2020, 8, 35.	2.8	15
13	Harnessing protein posttranslational modifications for plant improvement. , 2020, , 385-401.		3
14	Systems biology of crop improvement: Drought tolerance as a model to integrate molecular biology, physiology, and breeding., 2020,, 209-231.		2
15	New plant breeding technologies for food security. Science, 2019, 363, 1390-1391.	12.6	125
16	Comparative whole genome re-sequencing analysis in upland New Rice for Africa: insights into the breeding history and respective genome compositions. Rice, 2018, 11, 33.	4.0	9
17	Rice Seed Germination Underwater: Morpho-Physiological Responses and the Bases of Differential Expression of Alcoholic Fermentation Enzymes. Frontiers in Plant Science, 2017, 8, 1857.	3.6	32
18	Physiological and Proteomic Analysis of the Rice Mutant cpm2 Suggests a Negative Regulatory Role of Jasmonic Acid in Drought Tolerance. Frontiers in Plant Science, 2017, 8, 1903.	3.6	71

#	Article	IF	Citations
19	Reference genes for accurate gene expression analyses across different tissues, developmental stages and genotypes in rice for drought tolerance. Rice, 2016, 9, 32.	4.0	45
20	Cereal Root Proteomics for Complementing the Mechanistic Understanding of Plant Abiotic Stress Tolerance., 2016, , 19-51.		2
21	Total Soluble Protein Extraction for Improved Proteomic Analysis of Transgenic Rice Plant Roots. Methods in Molecular Biology, 2016, 1385, 139-147.	0.9	5
22	Molecular Analyses of Transgenic Plants. Methods in Molecular Biology, 2016, 1385, 201-222.	0.9	5
23	Drought susceptibility of modern rice varieties: an effect of linkage of drought tolerance with undesirable traits. Scientific Reports, 2015, 5, 14799.	3.3	145
24	Action of multiple intra-QTL genes concerted around a co-localized transcription factor underpins a large effect QTL. Scientific Reports, 2015, 5, 15183.	3.3	58
25	Exploring Jasmonates in the Hormonal Network of Drought and Salinity Responses. Frontiers in Plant Science, 2015, 6, 1077.	3.6	221
26	Proteomic insights into the role of the large-effect QTL qDTY 12.1 for rice yield under drought. Molecular Breeding, 2015, 35, 1.	2.1	30
27	Variation in primary metabolites in parental and near-isogenic lines of the QTL qDTY 12.1: altered roots and flag leaves but similar spikelets of rice under drought. Molecular Breeding, 2015, 35, 138.	2.1	35
28	Translating the Genome for Translational Research: Proteomics in Agriculture. , 2015, , 247-264.		0
29	RICE RESEARCH TO BREAK YIELD BARRIERS. Cosmos, 2015, 11, 37-54.	0.4	3
30	Cereal flag leaf adaptations for grain yield under drought: knowledge status and gaps. Molecular Breeding, 2013, 31, 749-766.	2.1	70
31	Crop seed oil bodies: From challenges in protein identification to an emerging picture of the oil body proteome. Proteomics, 2013, 13, 1836-1849.	2.2	45
32	Rice Resistance to Planthoppers and Leafhoppers. Critical Reviews in Plant Sciences, 2013, 32, 162-191.	5.7	179
33	Plant proteomics in India and Nepal: current status and challenges ahead. Physiology and Molecular Biology of Plants, 2013, 19, 461-477.	3.1	7
34	A decade of plant proteomics and mass spectrometry: Translation of technical advancements to food security and safety issues. Mass Spectrometry Reviews, 2013, 32, 335-365.	5.4	70
35	The phytohormone crosstalk paradigm takes center stage in understanding how plants respond to abiotic stresses. Plant Cell Reports, 2013, 32, 945-957.	5.6	218
36	Protein SUMOylation and plant abiotic stress signaling: in silico case study of rice RLKs, heat-shock and Ca2+-binding proteins. Plant Cell Reports, 2013, 32, 1053-1065.	5.6	21

#	Article	IF	CITATIONS
37	Proteomic Perspectives on Understanding and Improving Jatropha curcas L, 2013,, 375-391.		6
38	Contrapuntal role of ABA: Does it mediate stress tolerance or plant growth retardation under long-term drought stress?. Gene, 2012, 506, 265-273.	2.2	250
39	Root proteases: reinforced links between nitrogen uptake and mobilization and drought tolerance. Physiologia Plantarum, 2012, 145, 165-179.	5.2	45
40	Genetic Advances in Adapting Rice to a Rapidly Changing Climate. Journal of Agronomy and Crop Science, 2012, 198, 360-373.	3.5	84
41	Jatropha curcas oil body proteome and oleosins: L-form JcOle3 as a potential phylogenetic marker. Plant Physiology and Biochemistry, 2011, 49, 352-356.	5.8	39
42	Drought Resistance Improvement in Rice: An Integrated Genetic and Resource Management Strategy. Plant Production Science, 2011, 14, 1-14.	2.0	192
43	Transgene Integration, Expression and Stability in Plants: Strategies for Improvements., 2010,, 201-237.		24
44	Stable transgenes bear fruit. Nature Biotechnology, 2008, 26, 653-654.	17.5	14
45	Recent developments and future prospects in insect pest control in transgenic crops. Trends in Plant Science, 2006, 11 , $302-308$.	8.8	251
46	The Quest to Understand the Basis and Mechanisms that Control Expression of Introduced Transgenes in Crop Plants. Plant Signaling and Behavior, 2006, 1, 185-195.	2.4	61
47	Particle bombardment and the genetic enhancement of crops: myths and realities. Molecular Breeding, 2005, 15, 305-327.	2.1	291
48	Transformation of Plants with Multiple Cassettes Generates Simple Transgene Integration Patterns and High Expression Levels. Molecular Breeding, 2005, 16, 247-260.	2.1	71
49	High-throughput localization of functional elements by quantitative chromatin profiling. Nature Methods, 2004, 1, 219-225.	19.0	123
50	Dedifferentiation-mediated changes in transposition behavior make the Activator transposon an ideal tool for functional genomics in rice. Molecular Breeding, 2004, 13, 177-191.	2.1	10
51	Identification of a 49-bp fragment of the HvLTP2 promoter directing aleurone cell specific expression. Gene, 2004, 341, 49-58.	2.2	27
52	Genome-Scale Analysis of Hematopoietic Regulatory Sequences by Digital Analysis of Chromatin Structure Blood, 2004, 104, 4163-4163.	1.4	0
53	Transgene integration, organization and interaction in plants. Plant Molecular Biology, 2003, 52, 247-258.	3.9	241
54	Foreign DNA: Integration and Expression in Transgenic Plants. , 2002, 24, 107-136.		22

#	Article	IF	CITATIONS
55	Transposon Insertional Mutagenesis in Rice. Plant Physiology, 2001, 125, 1175-1177.	4.8	58
56	Linear transgene constructs lacking vector backbone sequences generate low-copy-number transgenic plants with simple integration patterns. Transgenic Research, 2000, 9, 11-19.	2.4	194
57	Alternative silencing effects involve distinct types of non-spreading cytosine methylation at a three-gene, single-copy transgenic locus in rice. Molecular Genetics and Genomics, 2000, 263, 106-118.	2.4	33
58	Molecular characterization of transforming plasmid rearrangements in transgenic rice reveals a recombination hotspot in the CaMV 35S promoter and confirms the predominance of microhomology mediated recombination. Plant Journal, 1999, 17, 591-601.	5.7	177
59	Matrix attachment regions increase transgene expression levels and stability in transgenic rice plants and their progeny. Plant Journal, 1999, 18, 233-242.	5.7	93
60	Transgene expression in rice engineered through particle bombardment: molecular factors controlling stable expression and transgene silencing. Planta, 1999, 208, 88-97.	3.2	139
61	Particle-bombardment-mediated co-transformation of elite Chinese rice cultivars with genes conferring resistance to bacterial blight and sap-sucking insect pests. Planta, 1999, 208, 552-563.	3.2	80
62	The green fluorescent protein (GFP) as a vital screenable marker in rice transformation. Theoretical and Applied Genetics, 1998, 96, 164-169.	3.6	79
63	Expression of an engineered cysteine proteinase inhibitor (Oryzacystatin-lî"D86) for nematode resistance in transgenic rice plants. Theoretical and Applied Genetics, 1998, 96, 266-271.	3.6	130
64	Transgene organization in rice engineered through direct DNA transfer supports a two-phase integration mechanism mediated by the establishment of integration hot spots. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 7203-7208.	7.1	262
65	Narrow genetic and apparent phenetic diversity in Jatropha curcas: initial success with generating low phorbol ester interspecific hybrids. Nature Precedings, 0, , .	0.1	46