George M Church

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/590084/george-m-church-publications-by-year.pdf

Version: 2024-04-05

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

590	80,334	146	274
papers	citations	h-index	g-index
653	94,584	17.5 avg, IF	8.19
ext. papers	ext. citations		L-index

#	Paper	IF	Citations
590	Discovery and validation of human genomic safe harbor sites for gene and cell therapies <i>Cell Reports Methods</i> , 2022 , 2, 100154		1
589	Targeted intracellular delivery of Cas13 and Cas9 nucleases using bacterial toxin-based platforms <i>Cell Reports</i> , 2022 , 38, 110476	10.6	1
588	Orthogonally induced differentiation of stem cells for the programmatic patterning of vascularized organoids and bioprinted tissues <i>Nature Biomedical Engineering</i> , 2022 ,	19	5
587	Thirty-Eight Special: George Church Pushes the Biotech Envelope 2022 , 1, 127-132		
586	Towards practical and robust DNA-based data archiving using the yin Jang codec system. <i>Nature Computational Science</i> , 2022 , 2, 234-242		2
585	New intranasal and injectable gene therapy for healthy life extension <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2022 , 119, e2121499119	11.5	1
584	Framework for rapid comparison of extracellular vesicle isolation methods. ELife, 2021, 10,	8.9	9
583	MegaGate: A toxin-less gateway molecular cloning tool. STAR Protocols, 2021, 2, 100907	1.4	1
582	Multiplex Single-Molecule Kinetics of Nanopore-Coupled Polymerases. ACS Nano, 2021 , 15, 489-502	16.7	3
581	Ultrasensitive Measurement of Both SARS-CoV-2 RNA and Antibodies from Saliva. <i>Analytical Chemistry</i> , 2021 , 93, 5365-5370	7.8	9
580	Citizen-centered, auditable and privacy-preserving population genomics. <i>Nature Computational Science</i> , 2021 , 1, 192-198		3
579	Lineage barcoding in mice with homing CRISPR. <i>Nature Protocols</i> , 2021 , 16, 2088-2108	18.8	Ο
578	A computer-guided design tool to increase the efficiency of cellular conversions. <i>Nature Communications</i> , 2021 , 12, 1659	17.4	6
577	Barcoded oligonucleotides ligated on RNA amplified for multiplexed and parallel in situ analyses. <i>Nucleic Acids Research</i> , 2021 , 49, e58	20.1	3
576	High-throughput functional variant screens via in vivo production of single-stranded DNA. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	15
575	Porcine germline genome engineering. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	4
574	Low-N protein engineering with data-efficient deep learning. <i>Nature Methods</i> , 2021 , 18, 389-396	21.6	50

(2021-2021)

573	Enhancing CRISPR-Cas9 gRNA efficiency prediction by data integration and deep learning. <i>Nature Communications</i> , 2021 , 12, 3238	17.4	13
572	Measurement of large serine integrase enzymatic characteristics in HEK293 cells reveals variability and influence on downstream reporter expression. <i>FEBS Journal</i> , 2021 , 288, 6410-6427	5.7	2
571	L1CAM is not associated with extracellular vesicles in human cerebrospinal fluid or plasma. <i>Nature Methods</i> , 2021 , 18, 631-634	21.6	30
57°	ABLC Forum: Aspirations for a Fragile Planet. <i>Industrial Biotechnology</i> , 2021 , 17, 170-176	1.3	
569	Multisystem inflammatory syndrome in children is driven by zonulin-dependent loss of gut mucosal barrier. <i>Journal of Clinical Investigation</i> , 2021 , 131,	15.9	46
568	Porcine genome engineering for xenotransplantation. <i>Advanced Drug Delivery Reviews</i> , 2021 , 168, 229-2	2 48 .5	10
567	A comprehensive library of human transcription factors for cell fate engineering. <i>Nature Biotechnology</i> , 2021 , 39, 510-519	44.5	40
566	Chromosome-scale, haplotype-resolved assembly of human genomes. <i>Nature Biotechnology</i> , 2021 , 39, 309-312	44.5	44
565	Extensive germline genome engineering in pigs. <i>Nature Biomedical Engineering</i> , 2021 , 5, 134-143	19	41
564	TBDB: a database of structurally annotated T-box riboswitch:tRNA pairs. <i>Nucleic Acids Research</i> , 2021 , 49, D229-D235	20.1	1
563	Expansion sequencing: Spatially precise in situ transcriptomics in intact biological systems. <i>Science</i> , 2021 , 371,	33.3	64
562	Characterizing the portability of phage-encoded homologous recombination proteins. <i>Nature Chemical Biology</i> , 2021 , 17, 394-402	11.7	10
561	Anomalous COVID-19 tests hinder researchers. <i>Science</i> , 2021 , 371, 244-245	33.3	8
560	Engineering adeno-associated viral vectors to evade innate immune and inflammatory responses. <i>Science Translational Medicine</i> , 2021 , 13,	17.5	38
559	Deep diversification of an AAV capsid protein by machine learning. <i>Nature Biotechnology</i> , 2021 , 39, 691-	61916 5	39
558	Regulation of host and virus genes by neuronal miR-138 favours herpes simplex virus 1 latency. <i>Nature Microbiology</i> , 2021 , 6, 682-696	26.6	13
557	In situ genome sequencing resolves DNA sequence and structure in intact biological samples. <i>Science</i> , 2021 , 371,	33.3	50
556	Synthetic auxotrophy remains stable after continuous evolution and in coculture with mammalian cells. <i>Science Advances</i> , 2021 , 7,	14.3	3

555	Cell therapy strategies for COVID-19: Current approaches and potential applications. <i>Science Advances</i> , 2021 , 7,	14.3	3
554	Designing efficient genetic code expansion in Bacillus subtilis to gain biological insights. <i>Nature Communications</i> , 2021 , 12, 5429	17.4	О
553	Neuronal Cell-type Engineering by Transcriptional Activation. Frontiers in Genome Editing, 2021, 3, 7156	5 92 7.5	1
552	Laboratory-Generated DNA Can Cause Anomalous Pathogen Diagnostic Test Results. <i>Microbiology Spectrum</i> , 2021 , 9, e0031321	8.9	3
551	Recording Temporal Signals with Minutes Resolution Using Enzymatic DNA Synthesis. <i>Journal of the American Chemical Society</i> , 2021 , 143, 16630-16640	16.4	2
550	An integrated pipeline for mammalian genetic screening Cell Reports Methods, 2021 , 1, 100082		2
549	Recombineering and MAGE Nature Reviews Methods Primers, 2021, 1,		13
548	Algorithms for the selection of fluorescent reporters. <i>Communications Biology</i> , 2021 , 4, 118	6.7	2
547	A machine learning toolkit for genetic engineering attribution to facilitate biosecurity. <i>Nature Communications</i> , 2020 , 11, 6293	17.4	4
546	Improved bacterial recombineering by parallelized protein discovery. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 13689-13698	11.5	25
545	Korean Genome Project: 1094 Korean personal genomes with clinical information. <i>Science Advances</i> , 2020 , 6, eaaz7835	14.3	23
544	A robust benchmark for detection of germline large deletions and insertions. <i>Nature Biotechnology</i> , 2020 , 38, 1347-1355	44.5	98
543	Implications of antibody-dependent enhancement of infection for SARS-CoV-2 countermeasures. <i>Nature Biotechnology</i> , 2020 , 38, 789-791	44.5	80
542	Release Factor Inhibiting Antimicrobial Peptides Improve Nonstandard Amino Acid Incorporation in Wild-type Bacterial Cells. <i>ACS Chemical Biology</i> , 2020 , 15, 1852-1861	4.9	8
541	A Deep Learning Approach to Antibiotic Discovery. <i>Cell</i> , 2020 , 180, 688-702.e13	56.2	430
540	ELOTHO and sTGFR2 treatment counteract the osteoarthritic phenotype developed in a rat model. <i>Protein and Cell</i> , 2020 , 11, 219-226	7.2	6
539	The Role of Synthetic Biology in Atmospheric Greenhouse Gas Reduction: Prospects and Challenges. <i>Biodesign Research</i> , 2020 , 2020, 1-8	3.1	7
538	Spatial Sequencing: A Perspective. <i>Journal of Biomolecular Techniques</i> , 2020 , 31, 44-46	1.1	6

(2020-2020)

537	Transparency is key to ethical vaccine research. Science, 2020, 370, 1422-1423	33.3	0
536	Synthetic genomes with altered genetic codes. Current Opinion in Systems Biology, 2020 , 24, 32-40	3.2	0
535	Characterization of porcine endogenous retrovirus particles released by the CRISPR/Cas9 inactivated cell line PK15 clone 15. <i>Xenotransplantation</i> , 2020 , 27, e12563	2.8	8
534	A haplotype-aware de novo assembly of related individuals using pedigree sequence graph. <i>Bioinformatics</i> , 2020 , 36, 2385-2392	7.2	9
533	A deep learning approach to programmable RNA switches. <i>Nature Communications</i> , 2020 , 11, 5057	17.4	27
532	Photon-directed multiplexed enzymatic DNA synthesis for molecular digital data storage. <i>Nature Communications</i> , 2020 , 11, 5246	17.4	20
531	Targeted intracellular degradation of SARS-CoV-2 via computationally optimized peptide fusions. <i>Communications Biology</i> , 2020 , 3, 715	6.7	8
530	Reprogramming to recover youthful epigenetic information and restore vision. <i>Nature</i> , 2020 , 588, 124-	139.4	128
529	Pluripotent stem cell-derived CAR-macrophage cells with antigen-dependent anti-cancer cell functions. <i>Journal of Hematology and Oncology</i> , 2020 , 13, 153	22.4	50
528	Robust differentiation of human pluripotent stem cells into endothelial cells via temporal modulation of ETV2 with modified mRNA. <i>Science Advances</i> , 2020 , 6, eaba7606	14.3	20
527	The whale shark genome reveals how genomic and physiological properties scale with body size. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 20662-2067	1 ^{11.5}	13
526	3D mapping and accelerated super-resolution imaging of the human genome using in situ sequencing. <i>Nature Methods</i> , 2020 , 17, 822-832	21.6	39
525	Benchmarking evolutionary tinkering underlying human-viral molecular mimicry shows multiple host pulmonary-arterial peptides mimicked by SARS-CoV-2. <i>Cell Death Discovery</i> , 2020 , 6, 96	6.9	22
524	Reactions to the National Academies/Royal Society Report on. CRISPR Journal, 2020, 3, 332-349	2.5	10
523	Global citizen deliberation on genome editing. Science, 2020, 369, 1435-1437	33.3	27
522	The COVID-19 XPRIZE and the need for scalable, fast, and widespread testing. <i>Nature Biotechnology</i> , 2020 , 38, 1021-1024	44.5	45
521	Core commitments for field trials of gene drive organisms. <i>Science</i> , 2020 , 370, 1417-1419	33.3	35
520	Enabling large-scale genome editing at repetitive elements by reducing DNA nicking. <i>Nucleic Acids Research</i> , 2020 , 48, 5183-5195	20.1	15

519	Data privacy in the age of personal genomics. <i>Nature Biotechnology</i> , 2019 , 37, 1115-1117	44.5	19
518	REST and Neural Gene Network Dysregulation in iPSC Models of Alzheimer's Disease. <i>Cell Reports</i> , 2019 , 26, 1112-1127.e9	10.6	96
517	Significant abundance of cis configurations of coding variants in diploid human genomes. <i>Nucleic Acids Research</i> , 2019 , 47, 2981-2995	20.1	4
516	Meta-omics analysis of elite athletes identifies a performance-enhancing microbe that functions via lactate metabolism. <i>Nature Medicine</i> , 2019 , 25, 1104-1109	50.5	242
515	The Advent of Human Life Data Economics. <i>Trends in Molecular Medicine</i> , 2019 , 25, 566-570	11.5	4
5 ¹ 4	Terminator-free template-independent enzymatic DNA synthesis for digital information storage. Nature Communications, 2019, 10, 2383	17.4	68
513	'Fit-for-purpose?' - challenges and opportunities for applications of blockchain technology in the future of healthcare. <i>BMC Medicine</i> , 2019 , 17, 68	11.4	121
512	Accurate analysis of genuine CRISPR editing events with ampliCan. <i>Genome Research</i> , 2019 , 29, 843-847	9.7	25
511	Functional genomics of the rapidly replicating bacterium Vibrio natriegens by CRISPRi. <i>Nature Microbiology</i> , 2019 , 4, 1105-1113	26.6	75
510	Evolthon: A community endeavor to evolve lab evolution. <i>PLoS Biology</i> , 2019 , 17, e3000182	9.7	8
509	Cell-free Protein Expression Using the Rapidly Growing Bacterium Vibrio natriegens. <i>Journal of Visualized Experiments</i> , 2019 ,	1.6	8
508	Daisy-chain gene drives for the alteration of local populations. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 8275-8282	11.5	93
507	Review of Scientific Self-Experimentation: Ethics History, Regulation, Scenarios, and Views Among Ethics Committees and Prominent Scientists. <i>Rejuvenation Research</i> , 2019 , 22, 31-42	2.6	14
506	Immuno-SABER enables highly multiplexed and amplified protein imaging in tissues. <i>Nature Biotechnology</i> , 2019 , 37, 1080-1090	44.5	141
505	Technological challenges and milestones for writing genomes. <i>Science</i> , 2019 , 366, 310-312	33.3	22
504	To help aging populations, classify organismal senescence. <i>Science</i> , 2019 , 366, 576-578	33.3	24
503	Rapid in vitro production of single-stranded DNA. <i>Nucleic Acids Research</i> , 2019 , 47, 11956-11962	20.1	12
502	A single combination gene therapy treats multiple age-related diseases. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 23505-23511	11.5	26

(2018-2019)

501	Circumventing cellular immunity by miR142-mediated regulation sufficiently supports rAAV-delivered OVA expression without activating humoral immunity. <i>JCI Insight</i> , 2019 , 5,	9.9	14
500	Challenges and opportunities of machine-guided capsid engineering for gene therapy. <i>Cell & Gene Therapy Insights</i> , 2019 , 5, 523-536	2.3	4
499	Comprehensive AAV capsid fitness landscape reveals a viral gene and enables machine-guided design. <i>Science</i> , 2019 , 366, 1139-1143	33.3	101
498	Regulation of lifespan by neural excitation and REST. <i>Nature</i> , 2019 , 574, 359-364	50.4	71
497	Unified rational protein engineering with sequence-based deep representation learning. <i>Nature Methods</i> , 2019 , 16, 1315-1322	21.6	234
496	Crystal structure of the RedIC-terminal domain in complex with Exonuclease reveals an unexpected homology with IDrf and an interaction with Escherichia coli single stranded DNA binding protein. <i>Nucleic Acids Research</i> , 2019 , 47, 1950-1963	20.1	12
495	Material solutions for delivery of CRISPR/Cas-based genome editing tools: Current status and future outlook. <i>Materials Today</i> , 2019 , 26, 40-66	21.8	58
494	An Integrated Genome-wide CRISPRa Approach to Functionalize lncRNAs in Drug Resistance. <i>Cell</i> , 2018 , 173, 649-664.e20	56.2	157
493	Adaptive evolution of genomically recoded. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 3090-3095	11.5	53
492	Spontaneous CRISPR loci generation in vivo by non-canonical spacer integration. <i>Nature Microbiology</i> , 2018 , 3, 310-318	26.6	15
491	Vom Design der Molekle des Lebens zum Design von Leben: Zukliftige Anwendungen von DNA-Technologien. <i>Angewandte Chemie</i> , 2018 , 130, 4395-4411	3.6	5
490	From Designing the Molecules of Life to Designing Life: Future Applications Derived from Advances in DNA Technologies. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 4313-4328	16.4	21
489	Efficient in situ barcode sequencing using padlock probe-based BaristaSeq. <i>Nucleic Acids Research</i> , 2018 , 46, e22	20.1	53
488	Engineering posttranslational proofreading to discriminate nonstandard amino acids. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 619-624	11.5	26
487	Simultaneous Discovery of Cell-Free DNA and the Nucleosome Ladder. <i>Genetics</i> , 2018 , 209, 27-29	4	6
486	Response to "Unexpected mutations after CRISPR-Cas9 editing in vivo". <i>Nature Methods</i> , 2018 , 15, 236	- 23 7.6	23
485	Precise Cas9 targeting enables genomic mutation prevention. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 3669-3673	11.5	18
484	A CRISPR-Cas9-based gene drive platform for genetic interaction analysis in Candida albicans. Nature Microbiology, 2018 , 3, 73-82	26.6	95

483	Heterologous erythromycin production across strain and plasmid construction. <i>Biotechnology Progress</i> , 2018 , 34, 271-276	2.8	24
482	Characterizing Protein Kinase Substrate Specificity Using the Proteomic Peptide Library (ProPeL) Approach. <i>Current Protocols in Chemical Biology</i> , 2018 , 10, e38	1.8	9
481	An enhanced CRISPR repressor for targeted mammalian gene regulation. <i>Nature Methods</i> , 2018 , 15, 611	1 <i>-5</i> 616	192
480	Directed differentiation of human induced pluripotent stem cells into mature kidney podocytes and establishment of a Glomerulus Chip. <i>Nature Protocols</i> , 2018 , 13, 1662-1685	18.8	72
479	Enabling multiplexed testing of pooled donor cells through whole-genome sequencing. <i>Genome Medicine</i> , 2018 , 10, 31	14.4	4
478	Codon usage of highly expressed genes affects proteome-wide translation efficiency. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, E4940-E4949	11.5	81
477	High-resolution mapping of DNA polymerase fidelity using nucleotide imbalances and next-generation sequencing. <i>Nucleic Acids Research</i> , 2018 , 46, e78	20.1	9
476	Biosensor libraries harness large classes of binding domains for construction of allosteric transcriptional regulators. <i>Nature Communications</i> , 2018 , 9, 3101	17.4	32
475	Inter-homologue repair in fertilized human eggs?. <i>Nature</i> , 2018 , 560, E5-E7	50.4	55
474	Developmental barcoding of whole mouse via homing CRISPR. <i>Science</i> , 2018 , 361,	33.3	168
474 473	Developmental barcoding of whole mouse via homing CRISPR. <i>Science</i> , 2018 , 361, Building Capacity for a Global Genome Editing Observatory: Conceptual Challenges. <i>Trends in Biotechnology</i> , 2018 , 36, 639-641	33·3 15.1	168 18
	Building Capacity for a Global Genome Editing Observatory: Conceptual Challenges. <i>Trends in</i>	15.1	
473	Building Capacity for a Global Genome Editing Observatory: Conceptual Challenges. <i>Trends in Biotechnology</i> , 2018 , 36, 639-641 Building Capacity for a Global Genome Editing Observatory: Institutional Design. <i>Trends in</i>	15.1	18
473 472	Building Capacity for a Global Genome Editing Observatory: Conceptual Challenges. <i>Trends in Biotechnology</i> , 2018 , 36, 639-641 Building Capacity for a Global Genome Editing Observatory: Institutional Design. <i>Trends in Biotechnology</i> , 2018 , 36, 741-743	15.1 15.1	18
473 472 471	Building Capacity for a Global Genome Editing Observatory: Conceptual Challenges. <i>Trends in Biotechnology</i> , 2018 , 36, 639-641 Building Capacity for a Global Genome Editing Observatory: Institutional Design. <i>Trends in Biotechnology</i> , 2018 , 36, 741-743 The Future of Multiplexed Eukaryotic Genome Engineering. <i>ACS Chemical Biology</i> , 2018 , 13, 313-325	15.1 15.1 4.9	18 16 27
473 472 471 470	Building Capacity for a Global Genome Editing Observatory: Conceptual Challenges. <i>Trends in Biotechnology</i> , 2018 , 36, 639-641 Building Capacity for a Global Genome Editing Observatory: Institutional Design. <i>Trends in Biotechnology</i> , 2018 , 36, 741-743 The Future of Multiplexed Eukaryotic Genome Engineering. <i>ACS Chemical Biology</i> , 2018 , 13, 313-325 CRISPR Guide RNA Cloning for Mammalian Systems. <i>Journal of Visualized Experiments</i> , 2018 , Characterizing posttranslational modifications in prokaryotic metabolism using a multiscale workflow. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 ,	15.1 15.1 4.9	18 16 27
473 472 471 470 469	Building Capacity for a Global Genome Editing Observatory: Conceptual Challenges. <i>Trends in Biotechnology</i> , 2018 , 36, 639-641 Building Capacity for a Global Genome Editing Observatory: Institutional Design. <i>Trends in Biotechnology</i> , 2018 , 36, 741-743 The Future of Multiplexed Eukaryotic Genome Engineering. <i>ACS Chemical Biology</i> , 2018 , 13, 313-325 CRISPR Guide RNA Cloning for Mammalian Systems. <i>Journal of Visualized Experiments</i> , 2018 , Characterizing posttranslational modifications in prokaryotic metabolism using a multiscale workflow. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 11096-11101 CRISPR-C: circularization of genes and chromosome by CRISPR in human cells. <i>Nucleic Acids</i>	15.1 15.1 4.9 1.6 11.5	18 16 27 3 28

(2017-2018)

465	Enhanced Bacterial Immunity and Mammalian Genome Editing via RNA-Polymerase-Mediated Dislodging of Cas9 from Double-Strand DNA Breaks. <i>Molecular Cell</i> , 2018 , 71, 42-55.e8	17.6	62
464	Current CRISPR gene drive systems are likely to be highly invasive in wild populations. <i>ELife</i> , 2018 , 7,	8.9	96
463	Cushing's syndrome mutant PKA exhibits altered substrate specificity. FEBS Letters, 2017, 591, 459-467	3.8	11
462	sgRNA Scorer 2.0: A Species-Independent Model To Predict CRISPR/Cas9 Activity. <i>ACS Synthetic Biology</i> , 2017 , 6, 902-904	5.7	124
461	Programmable transcriptional repression in mycobacteria using an orthogonal CRISPR interference platform. <i>Nature Microbiology</i> , 2017 , 2, 16274	26.6	204
460	Mature induced-pluripotent-stem-cell-derived human podocytes reconstitute kidney glomerular-capillary-wall function on a chip. <i>Nature Biomedical Engineering</i> , 2017 , 1,	19	253
459	Rapidly evolving homing CRISPR barcodes. <i>Nature Methods</i> , 2017 , 14, 195-200	21.6	125
458	Towards in situ sequencing for life detection 2017,		7
457	Dissecting limiting factors of the Protein synthesis Using Recombinant Elements (PURE) system. <i>Translation</i> , 2017 , 5, e1327006		16
456	An unbiased index to quantify participant's phenotypic contribution to an open-access cohort. <i>Scientific Reports</i> , 2017 , 7, 46148	4.9	1
456 455		4.9	246
	The promise of organ and tissue preservation to transform medicine. <i>Nature Biotechnology</i> , 2017 , 35, 530-542 Optimizing complex phenotypes through model-quided multiplex genome engineering. <i>Genome</i>		246
455	Scientific Reports, 2017, 7, 46148 The promise of organ and tissue preservation to transform medicine. Nature Biotechnology, 2017, 35, 530-542 Optimizing complex phenotypes through model-guided multiplex genome engineering. Genome	44.5	246
455 454	Scientific Reports, 2017, 7, 46148 The promise of organ and tissue preservation to transform medicine. Nature Biotechnology, 2017, 35, 530-542 Optimizing complex phenotypes through model-guided multiplex genome engineering. Genome Biology, 2017, 18, 100 Matching phenotypes to whole genomes: Lessons learned from four iterations of the personal	44·5 18.3 4·7	246
455 454 453	The promise of organ and tissue preservation to transform medicine. <i>Nature Biotechnology</i> , 2017 , 35, 530-542 Optimizing complex phenotypes through model-guided multiplex genome engineering. <i>Genome Biology</i> , 2017 , 18, 100 Matching phenotypes to whole genomes: Lessons learned from four iterations of the personal genome project community challenges. <i>Human Mutation</i> , 2017 , 38, 1266-1276	44·5 18.3 4·7	246 18
455 454 453 452	The promise of organ and tissue preservation to transform medicine. <i>Nature Biotechnology</i> , 2017 , 35, 530-542 Optimizing complex phenotypes through model-guided multiplex genome engineering. <i>Genome Biology</i> , 2017 , 18, 100 Matching phenotypes to whole genomes: Lessons learned from four iterations of the personal genome project community challenges. <i>Human Mutation</i> , 2017 , 38, 1266-1276 Cogenerating Synthetic Parts toward a Self-Replicating System. <i>ACS Synthetic Biology</i> , 2017 , 6, 1327-133	44·5 18.3 4·7	246 18 9
455 454 453 452 451	The promise of organ and tissue preservation to transform medicine. <i>Nature Biotechnology</i> , 2017 , 35, 530-542 Optimizing complex phenotypes through model-guided multiplex genome engineering. <i>Genome Biology</i> , 2017 , 18, 100 Matching phenotypes to whole genomes: Lessons learned from four iterations of the personal genome project community challenges. <i>Human Mutation</i> , 2017 , 38, 1266-1276 Cogenerating Synthetic Parts toward a Self-Replicating System. <i>ACS Synthetic Biology</i> , 2017 , 6, 1327-133 Evolutionary dynamics of CRISPR gene drives. <i>Science Advances</i> , 2017 , 3, e1601964 Efficient, footprint-free human iPSC genome editing by consolidation of Cas9/CRISPR and piggyBac	44.5 18.3 4.7 35.7	246 18 9 31

447	Extracellular Vesicle Isolation and Analysis by Western Blotting. <i>Methods in Molecular Biology</i> , 2017 , 1660, 143-152	1.4	48
446	Imaging of Isolated Extracellular Vesicles Using Fluorescence Microscopy. <i>Methods in Molecular Biology</i> , 2017 , 1660, 233-241	1.4	14
445	Beyond editing to writing large genomes. <i>Nature Reviews Genetics</i> , 2017 , 18, 749-760	30.1	35
444	Rapid Sequential in Situ Multiplexing with DNA Exchange Imaging in Neuronal Cells and Tissues. <i>Nano Letters</i> , 2017 , 17, 6131-6139	11.5	85
443	Rates, distribution and implications of postzygotic mosaic mutations in autism spectrum disorder. <i>Nature Neuroscience</i> , 2017 , 20, 1217-1224	25.5	144
442	Inactivation of porcine endogenous retrovirus in pigs using CRISPR-Cas9. <i>Science</i> , 2017 , 357, 1303-1307	33.3	395
441	Challenges and recommendations for epigenomics in precision health. <i>Nature Biotechnology</i> , 2017 , 35, 1128-1132	44.5	16
440	Compelling Reasons for Repairing Human Germlines. New England Journal of Medicine, 2017, 377, 1909	- 1599 121	25
439	CRISPR-Cas encoding of a digital movie into the genomes of a population of living bacteria. <i>Nature</i> , 2017 , 547, 345-349	50.4	169
438	Millstone: software for multiplex microbial genome analysis and engineering. <i>Genome Biology</i> , 2017 , 18, 101	18.3	5
437	Scalable Device for Automated Microbial Electroporation in a Digital Microfluidic Platform. <i>ACS Synthetic Biology</i> , 2017 , 6, 1701-1709	5.7	25
436	A systematic comparison of error correction enzymes by next-generation sequencing. <i>Nucleic Acids Research</i> , 2017 , 45, 9206-9217	20.1	15
435	PERV inactivation is necessary to guarantee absence of pig-to-patient PERVs transmission in xenotransplantation. <i>Xenotransplantation</i> , 2017 , 24, e12366	2.8	17
434	DBrypter le cerveau 2017 , N° 93, 14-21		
433	Addressing the ethical issues raised by synthetic human entities with embryo-like features. <i>ELife</i> , 2017 , 6,	8.9	55
432	Nucleotide-time alignment for molecular recorders. PLoS Computational Biology, 2017, 13, e1005483	5	
431	Overcoming Challenges in Engineering the Genetic Code. Journal of Molecular Biology, 2016, 428, 1004-	261 5	40
430	CRISPR-Cas9 System: Opportunities and Concerns. <i>Clinical Chemistry</i> , 2016 , 62, 1304-11	5.5	5

429	Design, synthesis, and testing toward a 57-codon genome. <i>Science</i> , 2016 , 353, 819-22	33.3	169
428	An ethnically relevant consensus Korean reference genome is a step towards personal reference genomes. <i>Nature Communications</i> , 2016 , 7, 13637	17.4	38
427	2016,		6
426	Extensive sequencing of seven human genomes to characterize benchmark reference materials. <i>Scientific Data</i> , 2016 , 3, 160025	8.2	345
425	Engineering and optimising deaminase fusions for genome editing. <i>Nature Communications</i> , 2016 , 7, 13330	17.4	46
424	Molecular recordings by directed CRISPR spacer acquisition. <i>Science</i> , 2016 , 353, aaf1175	33.3	129
423	GENOME ENGINEERING. The Genome Project-Write. <i>Science</i> , 2016 , 353, 126-7	33.3	138
422	Biosensor-based engineering of biosynthetic pathways. Current Opinion in Biotechnology, 2016 , 42, 84-9	111.4	150
421	Nucleic acid memory. <i>Nature Materials</i> , 2016 , 15, 366-70	27	145
420	Multiplexed Engineering in Biology. <i>Trends in Biotechnology</i> , 2016 , 34, 198-206	15.1	34
419	Genetically encoded sensors enable real-time observation of metabolite production. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, 2388-93	11.5	124
418	In vivo gene editing in dystrophic mouse muscle and muscle stem cells. <i>Science</i> , 2016 , 351, 407-411	33.3	711
417	Engineering an allosteric transcription factor to respond to new ligands. <i>Nature Methods</i> , 2016 , 13, 177	-83 .6	184
416	Tools for the Microbiome: Nano and Beyond. <i>ACS Nano</i> , 2016 , 10, 6-37	16.7	99
415	Efficient Reassignment of a Frequent Serine Codon in Wild-Type Escherichia coli. <i>ACS Synthetic Biology</i> , 2016 , 5, 163-71	5.7	30
414	Simulating Serial-Target Antibacterial Drug Synergies Using Flux Balance Analysis. <i>PLoS ONE</i> , 2016 , 11, e0147651	3.7	10
413	Forward Error Correction for DNA Data Storage. <i>Procedia Computer Science</i> , 2016 , 80, 1011-1022	1.6	114
412	Next stop for the CRISPR revolution: RNA-guided epigenetic regulators. FEBS Journal, 2016, 283, 3181-	9 <u>3</u> .7	52

411	Nanoscale imaging of RNA with expansion microscopy. <i>Nature Methods</i> , 2016 , 13, 679-84	21.6	220
410	Complete mitochondrial genomes of living and extinct pigeons revise the timing of the columbiform radiation. <i>BMC Evolutionary Biology</i> , 2016 , 16, 230	3	25
409	Comparison of Cas9 activators in multiple species. <i>Nature Methods</i> , 2016 , 13, 563-567	21.6	308
408	Real-time single-molecule electronic DNA sequencing by synthesis using polymer-tagged nucleotides on a nanopore array. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, 5233-8	11.5	86
407	Performance of optimized noncanonical amino acid mutagenesis systems in the absence of release factor 1. <i>Molecular BioSystems</i> , 2016 , 12, 1746-9		26
406	Characterizing Cas9 Protospacer-Adjacent Motifs with High-Throughput Sequencing of Library Depletion Experiments. <i>Cold Spring Harbor Protocols</i> , 2016 , 2016,	1.2	2
405	Characterization of Cas9-Guide RNA Orthologs. <i>Cold Spring Harbor Protocols</i> , 2016 , 2016,	1.2	10
404	A multifunctional AAV-CRISPR-Cas9 and its host response. <i>Nature Methods</i> , 2016 , 13, 868-74	21.6	359
403	Emergent rules for codon choice elucidated by editing rare arginine codons in Escherichia coli. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, E5588-97	11.5	30
402	Design and characterization of a nanopore-coupled polymerase for single-molecule DNA sequencing by synthesis on an electrode array. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, E6749-E6756	11.5	37
401	The whole genome sequences and experimentally phased haplotypes of over 100 personal genomes. <i>GigaScience</i> , 2016 , 5, 42	7.6	15
400	Biocontainment of genetically modified organisms by synthetic protein design. <i>Nature</i> , 2015 , 518, 55-6	5050.4	255
399	BIOSAFETY. Safeguarding gene drive experiments in the laboratory. <i>Science</i> , 2015 , 349, 927-9	33.3	215
398	Preserved DNA Damage Checkpoint Pathway Protects against Complications in Long-Standing Type 1 Diabetes. <i>Cell Metabolism</i> , 2015 , 22, 239-52	24.6	34
397	Unraveling CRISPR-Cas9 genome engineering parameters via a library-on-library approach. <i>Nature Methods</i> , 2015 , 12, 823-6	21.6	265
396	Complete Genome Sequences of T4-Like Bacteriophages RB3, RB5, RB6, RB7, RB9, RB10, RB27, RB33, RB55, RB59, and RB68. <i>Genome Announcements</i> , 2015 , 3,		8
395	Biotechnology. A prudent path forward for genomic engineering and germline gene modification. <i>Science</i> , 2015 , 348, 36-8	33.3	413
394	Highly efficient Cas9-mediated transcriptional programming. <i>Nature Methods</i> , 2015 , 12, 326-8	21.6	856

(2015-2015)

393	Neutralizing antibodies against West Nile virus identified directly from human B cells by single-cell analysis and next generation sequencing. <i>Integrative Biology (United Kingdom)</i> , 2015 , 7, 1587-97	3.7	57
392	A National Network of Neurotechnology Centers for the BRAIN Initiative. <i>Neuron</i> , 2015 , 88, 445-8	13.9	12
391	Improving microbial fitness in the mammalian gut by in vivo temporal functional metagenomics. <i>Molecular Systems Biology</i> , 2015 , 11, 788	12.2	22
390	Genome-wide inactivation of porcine endogenous retroviruses (PERVs). <i>Science</i> , 2015 , 350, 1101-4	33.3	394
389	HEART DISEASE. Titin mutations in iPS cells define sarcomere insufficiency as a cause of dilated cardiomyopathy. <i>Science</i> , 2015 , 349, 982-6	33.3	379
388	Synthetic biosensors for precise gene control and real-time monitoring of metabolites. <i>Nucleic Acids Research</i> , 2015 , 43, 7648-60	20.1	151
387	Cas9 gRNA engineering for genome editing, activation and repression. <i>Nature Methods</i> , 2015 , 12, 1051-	421.6	210
386	Perspective: Encourage the innovators. <i>Nature</i> , 2015 , 528, S7	50.4	11
385	Bioart. Trends in Biotechnology, 2015 , 33, 724-734	15.1	17
384	Accurate whole genome sequencing as the ultimate genetic test. Clinical Chemistry, 2015, 61, 305-6	5.5	7
383	Multi-kilobase homozygous targeted gene replacement in human induced pluripotent stem cells. <i>Nucleic Acids Research</i> , 2015 , 43, e21	20.1	111
382	Fungal lysis by a soil bacterium fermenting cellulose. <i>Environmental Microbiology</i> , 2015 , 17, 2618-27	5.2	18
381	Direct mutagenesis of thousands of genomic targets using microarray-derived oligonucleotides. <i>ACS Synthetic Biology</i> , 2015 , 4, 17-22	5.7	46
380	Genome and Transcriptome of Clostridium phytofermentans, Catalyst for the Direct Conversion of Plant Feedstocks to Fuels. <i>PLoS ONE</i> , 2015 , 10, e0118285	3.7	16
379	Safeguarding CRISPR-Cas9 gene drives in yeast. <i>Nature Biotechnology</i> , 2015 , 33, 1250-1255	44.5	231
378	Fluorescent in situ sequencing (FISSEQ) of RNA for gene expression profiling in intact cells and tissues. <i>Nature Protocols</i> , 2015 , 10, 442-58	18.8	280
377	Insights into the evolution of longevity from the bowhead whale genome. Cell Reports, 2015, 10, 112-22	210.6	203
376	Puzzle Imaging: Using Large-Scale Dimensionality Reduction Algorithms for Localization. <i>PLoS ONE</i> , 2015 , 10, e0131593	3.7	5

375	Rosetta Brain 2015 , 50-64		2
374	A general strategy to construct small molecule biosensors in eukaryotes. <i>ELife</i> , 2015 , 4,	8.9	114
373	Crispr-mediated Gene Targeting of Human Induced Pluripotent Stem Cells. <i>Current Protocols in Stem Cell Biology</i> , 2015 , 35, 5A.8.1-5A.8.22	2.8	17
37 2	Realizing the potential of synthetic biology. <i>Nature Reviews Molecular Cell Biology</i> , 2014 , 15, 289-94	48.7	151
371	Raw data: access to inaccuracyresponse. <i>Science</i> , 2014 , 343, 969	33.3	2
370	Modeling the mitochondrial cardiomyopathy of Barth syndrome with induced pluripotent stem cell and heart-on-chip technologies. <i>Nature Medicine</i> , 2014 , 20, 616-23	50.5	604
369	Large-scale de novo DNA synthesis: technologies and applications. <i>Nature Methods</i> , 2014 , 11, 499-507	21.6	457
368	A bacterial strain with a unique quadruplet codon specifying non-native amino acids. <i>ChemBioChem</i> , 2014 , 15, 1782-6	3.8	36
367	The new century of the brain. Scientific American, 2014, 310, 38-45	0.5	23
366	The role of replicates for error mitigation in next-generation sequencing. <i>Nature Reviews Genetics</i> , 2014 , 15, 56-62	30.1	192
365	Genome editing in human stem cells. <i>Methods in Enzymology</i> , 2014 , 546, 119-38	1.7	70
364	Multiplex single-molecule interaction profiling of DNA-barcoded proteins. <i>Nature</i> , 2014 , 515, 554-7	50.4	56
363	Engineering allostery. <i>Trends in Genetics</i> , 2014 , 30, 521-8	8.5	50
362	Integrating B cell lineage information into statistical tests for detecting selection in Ig sequences. <i>Journal of Immunology</i> , 2014 , 192, 867-74	5.3	26
361	Biotechnology. Regulating gene drives. <i>Science</i> , 2014 , 345, 626-8	33.3	232
360	Harvard Personal Genome Project: lessons from participatory public research. <i>Genome Medicine</i> , 2014 , 6, 10	14.4	68
359	CRISPR/Cas9-Directed Genome Editing of Cultured Cells. <i>Current Protocols in Molecular Biology</i> , 2014 , 107, 31.1.1-17	2.9	51
358	Genome editing assessment using CRISPR Genome Analyzer (CRISPR-GA). <i>Bioinformatics</i> , 2014 , 30, 296	8 7 7. D	107

(2014-2014)

357	Recoding the genetic code with selenocysteine. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 319-23	16.4	60
356	CHOPCHOP: a CRISPR/Cas9 and TALEN web tool for genome editing. <i>Nucleic Acids Research</i> , 2014 , 42, W401-7	20.1	707
355	Umkodierung des genetischen Codes mit Selenocystein. <i>Angewandte Chemie</i> , 2014 , 126, 325-330	3.6	8
354	Titelbild: Umkodierung des genetischen Codes mit Selenocystein (Angew. Chem. 1/2014). <i>Angewandte Chemie</i> , 2014 , 126, 1-1	3.6	124
353	Spatial information in large-scale neural recordings. <i>Frontiers in Computational Neuroscience</i> , 2014 , 8, 172	3.5	5
352	Concerning RNA-guided gene drives for the alteration of wild populations. <i>ELife</i> , 2014 , 3,	8.9	525
351	CasFinder: Flexible algorithm for identifying specific Cas9 targets in genomes 2014,		41
350	New class of biological detectors for WIMPs. International Journal of Modern Physics A, 2014 , 29, 14430	07.2	8
349	High-resolution antibody dynamics of vaccine-induced immune responses. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 4928-33	11.5	148
348	Syntrophic exchange in synthetic microbial communities. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, E2149-56	11.5	322
347	Next-generation carrier screening. <i>Genetics in Medicine</i> , 2014 , 16, 132-40	8.1	35
346	Evolution-guided optimization of biosynthetic pathways. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 17803-8	11.5	197
345	Rapid neurogenesis through transcriptional activation in human stem cells. <i>Molecular Systems Biology</i> , 2014 , 10, 760	12.2	130
344	Multiple haplotype-resolved genomes reveal population patterns of gene and protein diplotypes. <i>Nature Communications</i> , 2014 , 5, 5569	17.4	26
343	Targeted and genome-wide sequencing reveal single nucleotide variations impacting specificity of Cas9 in human stem cells. <i>Nature Communications</i> , 2014 , 5, 5507	17.4	106
342	Rational optimization of tolC as a powerful dual selectable marker for genome engineering. <i>Nucleic Acids Research</i> , 2014 , 42, 4779-90	20.1	29
341	Information access. Raw personal data: providing access. <i>Science</i> , 2014 , 343, 373-4	33.3	40
340	B cells populating the multiple sclerosis brain mature in the draining cervical lymph nodes. <i>Science Translational Medicine</i> , 2014 , 6, 248ra107	17.5	285

339	The Naked Mole Rat Genome Resource: facilitating analyses of cancer and longevity-related adaptations. <i>Bioinformatics</i> , 2014 , 30, 3558-60	7.2	62
338	CRISPR/Cas9-mediated phage resistance is not impeded by the DNA modifications of phage T4. <i>PLoS ONE</i> , 2014 , 9, e98811	3.7	22
337	Natural reassignment of CUU and CUA sense codons to alanine in Ashbya mitochondria. <i>Nucleic Acids Research</i> , 2014 , 42, 499-508	20.1	18
336	Highly multiplexed subcellular RNA sequencing in situ. <i>Science</i> , 2014 , 343, 1360-3	33.3	631
335	CRISPR-Cas-mediated targeted genome editing in human cells. <i>Methods in Molecular Biology</i> , 2014 , 1114, 245-67	1.4	43
334	Improved cell-free RNA and protein synthesis system. <i>PLoS ONE</i> , 2014 , 9, e106232	3.7	55
333	Author response: Concerning RNA-guided gene drives for the alteration of wild populations 2014,		8
332	Recent progress in engineering human-associated microbiomes. <i>Methods in Molecular Biology</i> , 2014 , 1151, 3-25	1.4	12
331	Optical control of mammalian endogenous transcription and epigenetic states. <i>Nature</i> , 2013 , 500, 472-4	4 76 .4	635
330	CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. <i>Nature Biotechnology</i> , 2013 , 31, 833-8	44.5	1341
329	Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. <i>Nature Biotechnology</i> , 2013 , 31, 688-91	44.5	1001
328	Please reanimate. <i>Scientific American</i> , 2013 , 309, 12	0.5	9
327	Applications of Engineered Synthetic Ecosystems 2013 , 317-325		5
326	Quantification of microRNA expression with next-generation sequencing. <i>Current Protocols in Molecular Biology</i> , 2013 , Chapter 4, Unit 4.17	2.9	44
325	Deciphering the functions and regulation of brain-enriched A-to-I RNA editing. <i>Nature Neuroscience</i> , 2013 , 16, 1518-22	25.5	100
324	Composability of regulatory sequences controlling transcription and translation in Escherichia coli. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 14024-9	11.5	274
323	Genomically recoded organisms expand biological functions. <i>Science</i> , 2013 , 342, 357-60	33.3	553
322	Probing the limits of genetic recoding in essential genes. <i>Science</i> , 2013 , 342, 361-3	33.3	97

321	Causes and effects of N-terminal codon bias in bacterial genes. <i>Science</i> , 2013 , 342, 475-9	33.3	381
320	Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. <i>Nucleic Acids Research</i> , 2013 , 41, 4336-43	20.1	1094
319	On the design of clone-based haplotyping. <i>Genome Biology</i> , 2013 , 14, R100	18.3	17
318	Mutants of Cre recombinase with improved accuracy. <i>Nature Communications</i> , 2013 , 4, 2509	17.4	28
317	Heritable custom genomic modifications in Caenorhabditis elegans via a CRISPR-Cas9 system. <i>Genetics</i> , 2013 , 195, 1181-5	4	104
316	Orthogonal Cas9 proteins for RNA-guided gene regulation and editing. <i>Nature Methods</i> , 2013 , 10, 1116	5- 21 .6	615
315	Cas9 as a versatile tool for engineering biology. <i>Nature Methods</i> , 2013 , 10, 957-63	21.6	897
314	In vitro integration of ribosomal RNA synthesis, ribosome assembly, and translation. <i>Molecular Systems Biology</i> , 2013 , 9, 678	12.2	104
313	RNA-guided human genome engineering via Cas9. <i>Science</i> , 2013 , 339, 823-6	33.3	6363
312	PhIP-Seq characterization of autoantibodies from patients with multiple sclerosis, type 1 diabetes and rheumatoid arthritis. <i>Journal of Autoimmunity</i> , 2013 , 43, 1-9	15.5	55
311	Barcoding cells using cell-surface programmable DNA-binding domains. <i>Nature Methods</i> , 2013 , 10, 403-	-6 21.6	40
310	Protein interaction discovery using parallel analysis of translated ORFs (PLATO). <i>Nature Biotechnology</i> , 2013 , 31, 331-334	44.5	43
309	Nanotools for neuroscience and brain activity mapping. ACS Nano, 2013, 7, 1850-66	16.7	248
308	Neuroscience. The brain activity map. <i>Science</i> , 2013 , 339, 1284-5	33.3	147
307	Heritable genome editing in C. elegans via a CRISPR-Cas9 system. <i>Nature Methods</i> , 2013 , 10, 741-3	21.6	669
306	pLogo: a probabilistic approach to visualizing sequence motifs. <i>Nature Methods</i> , 2013 , 10, 1211-2	21.6	233
305	Yeast oligo-mediated genome engineering (YOGE). ACS Synthetic Biology, 2013, 2, 741-9	5.7	116
304	The effects of somatic hypermutation on neutralization and binding in the PGT121 family of broadly neutralizing HIV antibodies. <i>PLoS Pathogens</i> , 2013 , 9, e1003754	7.6	144

303	Statistical analysis of molecular signal recording. PLoS Computational Biology, 2013, 9, e1003145	5	21
302	Redirector: designing cell factories by reconstructing the metabolic objective. <i>PLoS Computational Biology</i> , 2013 , 9, e1002882	5	22
301	Optimization of scarless human stem cell genome editing. <i>Nucleic Acids Research</i> , 2013 , 41, 9049-61	20.1	302
300	Physical principles for scalable neural recording. Frontiers in Computational Neuroscience, 2013, 7, 137	3.5	155
299	An analysis and validation pipeline for large-scale RNAi-based screens. Scientific Reports, 2013, 3, 1076	4.9	5
298	Molecular threading: mechanical extraction, stretching and placement of DNA molecules from a liquid-air interface. <i>PLoS ONE</i> , 2013 , 8, e69058	3.7	4
297	ProPeL: A method to discover specific kinase motifs and predict target substrates. <i>FASEB Journal</i> , 2013 , 27, 597.4	0.9	
296	An interactive and probabilistic strategy for visualizing linear biological sequence motifs. <i>FASEB Journal</i> , 2013 , 27, 810.8	0.9	
295	Using ProPeL to discover the binding specificity of human DYRK1a. FASEB Journal, 2013, 27, 1045.3	0.9	
294	Improving genome understanding. <i>Nature</i> , 2013 , 502, 143	50.4	2
294	Improving genome understanding. <i>Nature</i> , 2013 , 502, 143 A logic-gated nanorobot for targeted transport of molecular payloads. <i>Science</i> , 2012 , 335, 831-4	50.4 33.3	1563
		33.3	
293	A logic-gated nanorobot for targeted transport of molecular payloads. <i>Science</i> , 2012 , 335, 831-4	33.3	1563
293 292	A logic-gated nanorobot for targeted transport of molecular payloads. <i>Science</i> , 2012 , 335, 831-4 Systematic identification of edited microRNAs in the human brain. <i>Genome Research</i> , 2012 , 22, 1533-40 Gene Assembly from Chip-Synthesized Oligonucleotides. <i>Current Protocols in Chemical Biology</i> ,	33.3	1563 136
293 292 291	A logic-gated nanorobot for targeted transport of molecular payloads. <i>Science</i> , 2012 , 335, 831-4 Systematic identification of edited microRNAs in the human brain. <i>Genome Research</i> , 2012 , 22, 1533-40 Gene Assembly from Chip-Synthesized Oligonucleotides. <i>Current Protocols in Chemical Biology</i> , 2012 , 2012, 1 Multiplexed in vivo His-tagging of enzyme pathways for in vitro single-pot multienzyme catalysis.	33·3 9·7 1.8	1563 136 11
293 292 291 290	A logic-gated nanorobot for targeted transport of molecular payloads. <i>Science</i> , 2012 , 335, 831-4 Systematic identification of edited microRNAs in the human brain. <i>Genome Research</i> , 2012 , 22, 1533-40 Gene Assembly from Chip-Synthesized Oligonucleotides. <i>Current Protocols in Chemical Biology</i> , 2012 , 2012, 1 Multiplexed in vivo His-tagging of enzyme pathways for in vitro single-pot multienzyme catalysis. <i>ACS Synthetic Biology</i> , 2012 , 1, 43-52	33·3 9·7 1.8	1563 136 11 75
293 292 291 290 289	A logic-gated nanorobot for targeted transport of molecular payloads. <i>Science</i> , 2012 , 335, 831-4 Systematic identification of edited microRNAs in the human brain. <i>Genome Research</i> , 2012 , 22, 1533-40 Gene Assembly from Chip-Synthesized Oligonucleotides. <i>Current Protocols in Chemical Biology</i> , 2012 , 2012, 1 Multiplexed in vivo His-tagging of enzyme pathways for in vitro single-pot multienzyme catalysis. <i>ACS Synthetic Biology</i> , 2012 , 1, 43-52 The brain activity map project and the challenge of functional connectomics. <i>Neuron</i> , 2012 , 74, 970-4	33.3 9.7 1.8 5.7	1563 136 11 75 383

285	How accurate can genetic predictions be?. <i>BMC Genomics</i> , 2012 , 13, 340	4.5	13
284	High-throughput multiplex sequencing of miRNA. <i>Current Protocols in Human Genetics</i> , 2012 , Chapter 11, Unit 11.12.1-10	3.2	22
283	Essential genes as antimicrobial targets and cornerstones of synthetic biology. <i>Trends in Biotechnology</i> , 2012 , 30, 601-7	15.1	72
282	Genome-scale promoter engineering by coselection MAGE. <i>Nature Methods</i> , 2012 , 9, 591-3	21.6	177
281	A BioBrick compatible strategy for genetic modification of plants. <i>Journal of Biological Engineering</i> , 2012 , 6, 8	6.3	17
280	Stable gene targeting in human cells using single-strand oligonucleotides with modified bases. <i>PLoS ONE</i> , 2012 , 7, e36697	3.7	25
279	Improving lambda red genome engineering in Escherichia coli via rational removal of endogenous nucleases. <i>PLoS ONE</i> , 2012 , 7, e44638	3.7	64
278	Using bacteria to determine protein kinase specificity and predict target substrates. <i>PLoS ONE</i> , 2012 , 7, e52747	3.7	23
277	Elevated coding mutation rate during the reprogramming of human somatic cells into induced pluripotent stem cells. <i>Stem Cells</i> , 2012 , 30, 435-40	5.8	140
276	Back to the future: from genome to metabolome. <i>Human Mutation</i> , 2012 , 33, 809-12	4.7	1
275	Iterative capped assembly: rapid and scalable synthesis of repeat-module DNA such as TAL effectors from individual monomers. <i>Nucleic Acids Research</i> , 2012 , 40, e117	20.1	160
274	Manipulating replisome dynamics to enhance lambda Red-mediated multiplex genome engineering. <i>Nucleic Acids Research</i> , 2012 , 40, e170	20.1	44
273	Enhanced multiplex genome engineering through co-operative oligonucleotide co-selection. <i>Nucleic Acids Research</i> , 2012 , 40, e132	20.1	81
272	A public resource facilitating clinical use of genomes. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, 11920-7	11.5	154
271	Genomic analysis of the hydrocarbon-producing, cellulolytic, endophytic fungus Ascocoryne sarcoides. <i>PLoS Genetics</i> , 2012 , 8, e1002558	6	64
270	Measuring cation dependent DNA polymerase fidelity landscapes by deep sequencing. <i>PLoS ONE</i> , 2012 , 7, e43876	3.7	40
269	Multiplexed genome engineering and genotyping methods applications for synthetic biology and metabolic engineering. <i>Methods in Enzymology</i> , 2011 , 498, 409-26	1.7	104
268	Overview of DNA sequencing strategies. <i>Current Protocols in Molecular Biology</i> , 2011 , Chapter 7, Unit7.	12.9	54

267	Precise manipulation of chromosomes in vivo enables genome-wide codon replacement. <i>Science</i> , 2011 , 333, 348-53	33.3	424
266	The three-dimensional architecture of a bacterial genome and its alteration by genetic perturbation. <i>Molecular Cell</i> , 2011 , 44, 252-64	17.6	203
265	Introduction and Historical Overview of DNA Sequencing. <i>Current Protocols in Molecular Biology</i> , 2011 , 96, 7.0.1	2.9	1
264	Panel discussion: can there be a biomarker for sleepiness?. <i>Journal of Clinical Sleep Medicine</i> , 2011 , 7, S45-8	3.1	8
263	RNA sequencing reveals differential expression of mitochondrial and oxidation reduction genes in the long-lived naked mole-rat when compared to mice. <i>PLoS ONE</i> , 2011 , 6, e26729	3.7	77
262	New technologies for integrating genomic, environmental and trait data. <i>Journal of Clinical Sleep Medicine</i> , 2011 , 7, S43-4	3.1	
261	Proteome-wide systems analysis of a cellulosic biofuel-producing microbe. <i>Molecular Systems Biology</i> , 2011 , 7, 461	12.2	74
260	Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription. <i>Nature Biotechnology</i> , 2011 , 29, 149-53	44.5	620
259	Autoantigen discovery with a synthetic human peptidome. <i>Nature Biotechnology</i> , 2011 , 29, 535-41	44.5	172
258	A new dawn for industrial photosynthesis. <i>Photosynthesis Research</i> , 2011 , 107, 269-77	3.7	107
257	Large-scale DNA editing of retrotransposons accelerates mammalian genome evolution. <i>Nature Communications</i> , 2011 , 2, 519	17.4	34
256	Transcriptional profiling of CD4 T cells identifies distinct subgroups of HIV-1 elite controllers. <i>Journal of Virology</i> , 2011 , 85, 3015-9	6.6	55
255	Modified bases enable high-efficiency oligonucleotide-mediated allelic replacement via mismatch repair evasion. <i>Nucleic Acids Research</i> , 2011 , 39, 7336-47	20.1	59
254	Phased whole-genome genetic risk in a family quartet using a major allele reference sequence. <i>PLoS Genetics</i> , 2011 , 7, e1002280	6	112
253	Barcoding bias in high-throughput multiplex sequencing of miRNA. <i>Genome Research</i> , 2011 , 21, 1506-1	19.7	91
252	Thoughts on the Manchester Manifesto. <i>Prometheus</i> , 2011 , 29, 343-344	O	
251	High-fidelity gene synthesis by retrieval of sequence-verified DNA identified using high-throughput pyrosequencing. <i>Nature Biotechnology</i> , 2010 , 28, 1291-4	44.5	80
250	Scalable gene synthesis by selective amplification of DNA pools from high-fidelity microchips. Nature Biotechnology, 2010 , 28, 1295-9	44.5	188

(2009-2010)

249	2020 visions. <i>Nature</i> , 2010 , 463, 26-32	50.4	61
248	Life after the synthetic cell. <i>Nature</i> , 2010 , 465, 422-4	50.4	48
247	The human microbiome harbors a diverse reservoir of antibiotic resistance genes. <i>Virulence</i> , 2010 , 1, 299-303	4.7	128
246	A functional metagenomic approach for expanding the synthetic biology toolbox for biomass conversion. <i>Molecular Systems Biology</i> , 2010 , 6, 360	12.2	54
245	A survey of genomic traces reveals a common sequencing error, RNA editing, and DNA editing. <i>PLoS Genetics</i> , 2010 , 6, e1000954	6	31
244	Collection and motif-based prediction of phosphorylation sites in human viruses. <i>Science Signaling</i> , 2010 , 3, rs2	8.8	25
243	Lambda red recombineering in Escherichia coli occurs through a fully single-stranded intermediate. <i>Genetics</i> , 2010 , 186, 791-9	4	126
242	Reprogramming of T cells from human peripheral blood. <i>Cell Stem Cell</i> , 2010 , 7, 15-9	18	251
241	Clinical assessment incorporating a personal genome. Lancet, The, 2010, 375, 1525-35	40	565
240	Extensive phosphorylation with overlapping specificity by Mycobacterium tuberculosis serine/threonine protein kinases. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2010 , 107, 7521-6	11.5	213
239	Ethical and practical guidelines for reporting genetic research results to study participants: updated guidelines from a National Heart, Lung, and Blood Institute working group. <i>Circulation: Cardiovascular Genetics</i> , 2010 , 3, 574-80		297
238	Human genome sequencing using unchained base reads on self-assembling DNA nanoarrays. <i>Science</i> , 2010 , 327, 78-81	33.3	928
237	Generation of functional human hepatic endoderm from human induced pluripotent stem cells. <i>Hepatology</i> , 2010 , 51, 329-35	11.2	347
236	Personal genomes in progress: from the human genome project to the personal genome project. <i>Dialogues in Clinical Neuroscience</i> , 2010 , 12, 47-60	5.7	49
235	Multiplex padlock targeted sequencing reveals human hypermutable CpG variations. <i>Genome Research</i> , 2009 , 19, 1606-15	9.7	59
234	Predicting protein post-translational modifications using meta-analysis of proteome scale data sets. <i>Molecular and Cellular Proteomics</i> , 2009 , 8, 365-79	7.6	86
233	Large-scale identification of genetic design strategies using local search. <i>Molecular Systems Biology</i> , 2009 , 5, 296	12.2	113
232	Public access to genome-wide data: five views on balancing research with privacy and protection. <i>PLoS Genetics</i> , 2009 , 5, e1000665	6	60

231	Evidence for large diversity in the human transcriptome created by Alu RNA editing. <i>Nucleic Acids Research</i> , 2009 , 37, 6905-15	20.1	46
230	Targeted gene inactivation in Clostridium phytofermentans shows that cellulose degradation requires the family 9 hydrolase Cphy3367. <i>Molecular Microbiology</i> , 2009 , 74, 1300-13	4.1	68
229	Programming cells by multiplex genome engineering and accelerated evolution. <i>Nature</i> , 2009 , 460, 894	-8984	1111
228	A highly annotated whole-genome sequence of a Korean individual. <i>Nature</i> , 2009 , 460, 1011-5	50.4	265
227	Targeted and genome-scale strategies reveal gene-body methylation signatures in human cells. <i>Nature Biotechnology</i> , 2009 , 27, 361-8	44.5	830
226	The challenges of sequencing by synthesis. <i>Nature Biotechnology</i> , 2009 , 27, 1013-23	44.5	189
225	Genome engineering. <i>Nature Biotechnology</i> , 2009 , 27, 1151-62	44.5	188
224	Digital RNA allelotyping reveals tissue-specific and allele-specific gene expression in human. <i>Nature Methods</i> , 2009 , 6, 613-8	21.6	136
223	The Human Ageing Genomic Resources: online databases and tools for biogerontologists. <i>Aging Cell</i> , 2009 , 8, 65-72	9.9	152
222	Meta-analysis of age-related gene expression profiles identifies common signatures of aging. <i>Bioinformatics</i> , 2009 , 25, 875-81	7.2	496
221	Synthetic gene networks that count. <i>Science</i> , 2009 , 324, 1199-202	33.3	449
220	Rapid prototyping of 3D DNA-origami shapes with caDNAno. <i>Nucleic Acids Research</i> , 2009 , 37, 5001-6	20.1	772
219	Functional characterization of the antibiotic resistance reservoir in the human microflora. <i>Science</i> , 2009 , 325, 1128-1131	33.3	620
218	The Scientific Foundation for personal genomics: recommendations from a National Institutes of Health-Centers for Disease Control and Prevention multidisciplinary workshop. <i>Genetics in Medicine</i> , 2009 , 11, 559-67	8.1	186
217	Genome-wide identification of human RNA editing sites by parallel DNA capturing and sequencing. <i>Science</i> , 2009 , 324, 1210-3	33.3	415
216	A robust approach to identifying tissue-specific gene expression regulatory variants using personalized human induced pluripotent stem cells. <i>PLoS Genetics</i> , 2009 , 5, e1000718	6	46
215	Tuberculosis drug resistance mutation database. <i>PLoS Medicine</i> , 2009 , 6, e2	11.6	396
214	Quantitative monitoring by polymerase colony assay of known mutations resistant to ABL kinase inhibitors. <i>Oncogene</i> , 2008 , 27, 775-82	9.2	19

(2007-2008)

213	Efficient microRNA capture and bar-coding via enzymatic oligonucleotide adenylation. <i>Nature Methods</i> , 2008 , 5, 777-9	21.6	42
212	Gene synthesis by circular assembly amplification. <i>Nature Methods</i> , 2008 , 5, 37-9	21.6	68
211	From genetic privacy to open consent. <i>Nature Reviews Genetics</i> , 2008 , 9, 406-11	30.1	313
210	Overview of DNA sequencing strategies. <i>Current Protocols in Molecular Biology</i> , 2008 , Chapter 7, Unit 7.1	2.9	38
209	Model-driven analysis of experimentally determined growth phenotypes for 465 yeast gene deletion mutants under 16 different conditions. <i>Genome Biology</i> , 2008 , 9, R140	18.3	43
208	The most conserved genome segments for life detection on Earth and other planets. <i>Origins of Life and Evolution of Biospheres</i> , 2008 , 38, 517-33	1.5	59
207	Hippocrates revisited? Old ideals and new realities. <i>Genomic Medicine</i> , 2008 , 2, 1-3		16
206	Bacteria subsisting on antibiotics. <i>Science</i> , 2008 , 320, 100-3	33.3	398
205	Free Factories: Unified Infrastructure for Data Intensive Web Services 2008, 2008, 391-404		3
204	Quantitative morphological signatures define local signaling networks regulating cell morphology. <i>Science</i> , 2007 , 316, 1753-6	33.3	238
203	DNA synthesis and biological security. <i>Nature Biotechnology</i> , 2007 , 25, 627-9	44.5	80
202	Multiplex amplification of large sets of human exons. <i>Nature Methods</i> , 2007 , 4, 931-6	21.6	357
201	Genome-wide expression dynamics of a marine virus and host reveal features of co-evolution. <i>Nature</i> , 2007 , 449, 83-6	50.4	248
200	Single molecule profiling of tau gene expression in Alzheimer's disease. <i>Journal of Neurochemistry</i> , 2007 , 103, 1228-36	6	52
199	Analyses of human-chimpanzee orthologous gene pairs to explore evolutionary hypotheses of aging. <i>Mechanisms of Ageing and Development</i> , 2007 , 128, 355-64	5.6	30
198	Synthetic biology projects in vitro. <i>Genome Research</i> , 2007 , 17, 1-6	9.7	133
197	Polony multiplex analysis of gene expression (PMAGE) in mouse hypertrophic cardiomyopathy. <i>Science</i> , 2007 , 316, 1481-4	33.3	155
196	Patterns and implications of gene gain and loss in the evolution of Prochlorococcus. <i>PLoS Genetics</i> , 2007 , 3, e231	6	397

195	An analysis of the relationship between metabolism, developmental schedules, and longevity using phylogenetic independent contrasts. <i>Journals of Gerontology - Series A Biological Sciences and Medical Sciences</i> , 2007 , 62, 149-60	6.4	227
194	Chromosomal periodicity of evolutionarily conserved gene pairs. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2007 , 104, 10559-64	11.5	59
193	Cells discover fire: employing reactive oxygen species in development and consequences for aging. <i>Experimental Gerontology</i> , 2006 , 41, 1-10	4.5	82
192	Identifying metabolic enzymes with multiple types of association evidence. <i>BMC Bioinformatics</i> , 2006 , 7, 177	3.6	81
191	An integrated strategy for analyzing the unique developmental programs of different myoblast subtypes. <i>PLoS Genetics</i> , 2006 , 2, e16	6	74
190	PEPPeR, a platform for experimental proteomic pattern recognition. <i>Molecular and Cellular Proteomics</i> , 2006 , 5, 1927-41	7.6	119
189	Identifying regulatory mechanisms using individual variation reveals key role for chromatin modification. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2006 , 103, 14062-7	11.5	115
188	Polony DNA sequencing. <i>Current Protocols in Molecular Biology</i> , 2006 , Chapter 7, Unit 7.8	2.9	7
187	Relationships between p63 binding, DNA sequence, transcription activity, and biological function in human cells. <i>Molecular Cell</i> , 2006 , 24, 593-602	17.6	227
186	The transition between transcriptional initiation and elongation in E. coli is highly variable and often rate limiting. <i>Molecular Cell</i> , 2006 , 24, 747-757	17.6	168
185	Global gene expression of Prochlorococcus ecotypes in response to changes in nitrogen availability. <i>Molecular Systems Biology</i> , 2006 , 2, 53	12.2	115
184	MapQuant: open-source software for large-scale protein quantification. <i>Proteomics</i> , 2006 , 6, 1770-82	4.8	92
183	Sequencing genomes from single cells by polymerase cloning. <i>Nature Biotechnology</i> , 2006 , 24, 680-6	44.5	353
182	A sequence-oriented comparison of gene expression measurements across different hybridization-based technologies. <i>Nature Biotechnology</i> , 2006 , 24, 832-40	44.5	133
181	Long-range polony haplotyping of individual human chromosome molecules. <i>Nature Genetics</i> , 2006 , 38, 382-7	36.3	80
180	Mammalian ultraconserved elements are strongly depleted among segmental duplications and copy number variants. <i>Nature Genetics</i> , 2006 , 38, 1216-20	36.3	93
179	Assaying chromosomal inversions by single-molecule haplotyping. <i>Nature Methods</i> , 2006 , 3, 439-45	21.6	27
178	Genomes for all. <i>Scientific American</i> , 2006 , 294, 46-54	0.5	90

(2004-2006)

177	Engineering life: building a fab for biology. <i>Scientific American</i> , 2006 , 294, 44-51	0.5	138
176	Sequencing thoroughbreds. <i>Nature Biotechnology</i> , 2006 , 24, 139	44.5	6
175	Towards synthesis of a minimal cell. <i>Molecular Systems Biology</i> , 2006 , 2, 45	12.2	305
174	Monitoring Imatinib Resistance with a P olonylAssay: Towards Tailored Therapy of Chronic Myelogenous Leukemia (CML) <i>Blood</i> , 2006 , 108, 837-837	2.2	1
173	Accurate multiplex polony sequencing of an evolved bacterial genome. <i>Science</i> , 2005 , 309, 1728-32	33.3	1011
172	Molecular weight assessment of proteins in total proteome profiles using 1D-PAGE and LC/MS/MS. <i>Proteome Science</i> , 2005 , 3, 6	2.6	21
171	Preferred analysis methods for Affymetrix GeneChips revealed by a wholly defined control dataset. <i>Genome Biology</i> , 2005 , 6, R16	18.3	293
170	Genomes optimize reproduction: aging as a consequence of the developmental program. <i>Physiology</i> , 2005 , 20, 252-9	9.8	61
169	Assessing computational tools for the discovery of transcription factor binding sites. <i>Nature Biotechnology</i> , 2005 , 23, 137-44	44.5	950
168	Modular epistasis in yeast metabolism. <i>Nature Genetics</i> , 2005 , 37, 77-83	36.3	463
167	Photosynthesis genes in marine viruses yield proteins during host infection. <i>Nature</i> , 2005 , 438, 86-9	50.4	348
		J T	J+-
166	Let us go forth and safely multiply. <i>Nature</i> , 2005 , 438, 423	50.4	
166	Let us go forth and safely multiply. <i>Nature</i> , 2005 , 438, 423 Genomic analysis of LexA binding reveals the permissive nature of the Escherichia coli genome and identifies unconventional target sites. <i>Genes and Development</i> , 2005 , 19, 2619-30	50.4	
	Genomic analysis of LexA binding reveals the permissive nature of the Escherichia coli genome and	50.4	23
165	Genomic analysis of LexA binding reveals the permissive nature of the Escherichia coli genome and identifies unconventional target sites. <i>Genes and Development</i> , 2005 , 19, 2619-30 A network of transcriptionally coordinated functional modules in Saccharomyces cerevisiae.	50.4	23
165 164	Genomic analysis of LexA binding reveals the permissive nature of the Escherichia coli genome and identifies unconventional target sites. <i>Genes and Development</i> , 2005 , 19, 2619-30 A network of transcriptionally coordinated functional modules in Saccharomyces cerevisiae. <i>Genome Research</i> , 2005 , 15, 1298-306 Improving molecular cancer class discovery through sparse non-negative matrix factorization.	50.4 12.6 9.7	23 122 27
165 164 163	Genomic analysis of LexA binding reveals the permissive nature of the Escherichia coli genome and identifies unconventional target sites. <i>Genes and Development</i> , 2005 , 19, 2619-30 A network of transcriptionally coordinated functional modules in Saccharomyces cerevisiae. <i>Genome Research</i> , 2005 , 15, 1298-306 Improving molecular cancer class discovery through sparse non-negative matrix factorization. <i>Bioinformatics</i> , 2005 , 21, 3970-5 Discovering functional transcription-factor combinations in the human cell cycle. <i>Genome Research</i> ,	50.4 12.6 9.7 7.2	23 122 27 218

159	Prediction of similarly acting cis-regulatory modules by subsequence profiling and comparative genomics in Drosophila melanogaster and D.pseudoobscura. <i>Bioinformatics</i> , 2004 , 20, 2738-50	7.2	57
158	A motif co-occurrence approach for genome-wide prediction of transcription-factor-binding sites in Escherichia coli. <i>Genome Research</i> , 2004 , 14, 201-8	9.7	47
157	Filling gaps in a metabolic network using expression information. <i>Bioinformatics</i> , 2004 , 20 Suppl 1, i178-	-8/52	77
156	Localization to the proteasome is sufficient for degradation. <i>Journal of Biological Chemistry</i> , 2004 , 279, 21415-20	5.4	86
155	yMGV: a cross-species expression data mining tool. <i>Nucleic Acids Research</i> , 2004 , 32, D323-5	20.1	6
154	The complete genome and proteome of Mycoplasma mobile. <i>Genome Research</i> , 2004 , 14, 1447-61	9.7	193
153	Advanced sequencing technologies: methods and goals. <i>Nature Reviews Genetics</i> , 2004 , 5, 335-44	30.1	440
152	Accurate multiplex gene synthesis from programmable DNA microchips. <i>Nature</i> , 2004 , 432, 1050-4	50.4	325
151	Mathematical models of diffusion-constrained polymerase chain reactions: basis of high-throughput nucleic acid assays and simple self-organizing systems. <i>Journal of Theoretical Biology</i> , 2004 , 228, 31-46	2.3	11
150	Proteogenomic mapping as a complementary method to perform genome annotation. <i>Proteomics</i> , 2004 , 4, 59-77	4.8	254
149	Digital quantitative measurements of gene expression. <i>Biotechnology and Bioengineering</i> , 2004 , 86, 117	7-2.4)	19
148	Identification of many microRNAs that copurify with polyribosomes in mammalian neurons. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 360-5	11.5	483
147	Preferred in vivo ubiquitination sites. <i>Bioinformatics</i> , 2004 , 20, 3302-7	7.2	64
146	Identification of a novel set of genes regulated by a unique liver X receptor-alpha -mediated transcription mechanism. <i>Journal of Biological Chemistry</i> , 2003 , 278, 15252-60	5.4	16
145	Digital genotyping and haplotyping with polymerase colonies. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2003 , 100, 5926-31	11.5	130
144	Single molecule profiling of alternative pre-mRNA splicing. <i>Science</i> , 2003 , 301, 836-8	33.3	88
143	Global RNA half-life analysis in Escherichia coli reveals positional patterns of transcript degradation. <i>Genome Research</i> , 2003 , 13, 216-23	9.7	274
142	On the complete determination of biological systems. <i>Trends in Biotechnology</i> , 2003 , 21, 251-4	15.1	39

141	Fluorescent in situ sequencing on polymerase colonies. <i>Analytical Biochemistry</i> , 2003 , 320, 55-65	3.1	144
140	Regulatory network of acid resistance genes in Escherichia coli. <i>Molecular Microbiology</i> , 2003 , 48, 699-7	12.1	220
139	Does mapping reveal correlation between gene expression and protein-protein interaction?. <i>Nature Genetics</i> , 2003 , 33, 15-6; author reply 16-7	36.3	14
138	Reply to "Does mapping reveal correlation between gene expression and proteinprotein interaction?". <i>Nature Genetics</i> , 2003 , 33, 16-17	36.3	6
137	From annotated genomes to metabolic flux models and kinetic parameter fitting. <i>OMICS A Journal of Integrative Biology</i> , 2003 , 7, 301-16	3.8	56
136	Gene expression profiling reveals progesterone-mediated cell cycle and immunoregulatory roles of Hoxa-10 in the preimplantation uterus. <i>Molecular Endocrinology</i> , 2003 , 17, 610-27		83
135	Computational and experimental identification of C. elegans microRNAs. <i>Molecular Cell</i> , 2003 , 11, 1253	- 63 6	265
134	The amino-acid mutational spectrum of human genetic disease. <i>Genome Biology</i> , 2003 , 4, R72	18.3	136
133	A microarray-based antibiotic screen identifies a regulatory role for supercoiling in the osmotic stress response of Escherichia coli. <i>Genome Research</i> , 2003 , 13, 206-15	9.7	141
132	Parallel competition analysis of Saccharomyces cerevisiae strains differing by a single base using polymerase colonies. <i>Nucleic Acids Research</i> , 2003 , 31, e84	20.1	15
131	Predicting phenotype from patterns of annotation. <i>Bioinformatics</i> , 2003 , 19 Suppl 1, i183-9	7.2	23
130	Automated modelling of signal transduction networks. <i>BMC Bioinformatics</i> , 2002 , 3, 34	3.6	159
129	An open-source oligomicroarray standard for human and mouse. <i>Nature Biotechnology</i> , 2002 , 20, 1082-3	344.5	23
128	Identification of foreign gene sequences by transcript filtering against the human genome. <i>Nature Genetics</i> , 2002 , 30, 141-2	36.3	54
127	Identification of a novel cis-regulatory element involved in the heat shock response in Caenorhabditis elegans using microarray gene expression and computational methods. <i>Genome Research</i> , 2002 , 12, 701-12	9.7	166
126	Genome-wide co-occurrence of promoter elements reveals a cis-regulatory cassette of rRNA transcription motifs in Saccharomyces cerevisiae. <i>Genome Research</i> , 2002 , 12, 1723-31	9.7	66
125	Analysis of optimality in natural and perturbed metabolic networks. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2002 , 99, 15112-7	11.5	1025
124	Nucleotides of transcription factor binding sites exert interdependent effects on the binding affinities of transcription factors. <i>Nucleic Acids Research</i> , 2002 , 30, 1255-61	20.1	234

123	Measuring absolute expression with microarrays with a calibrated reference sample and an extended signal intensity range. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2002 , 99, 7554-9	11.5	217
122	Discrimination between paralogs using microarray analysis: application to the Yap1p and Yap2p transcriptional networks. <i>Molecular Biology of the Cell</i> , 2002 , 13, 1608-14	3.5	58
121	Escherichia coli gene expression responsive to levels of the response regulator EvgA. <i>Journal of Bacteriology</i> , 2002 , 184, 6225-34	3.5	132
120	Computational discovery of sense-antisense transcription in the human and mouse genomes. <i>Genome Biology</i> , 2002 , 3, RESEARCH0044	18.3	127
119	Genome-scale metabolic model of Helicobacter pylori 26695. <i>Journal of Bacteriology</i> , 2002 , 184, 4582-9	933.5	285
118	Computational identification of transcription factor binding sites via a transcription-factor-centric clustering (TFCC) algorithm. <i>Journal of Molecular Biology</i> , 2002 , 318, 71-81	6.5	86
117	A statistical model for investigating binding probabilities of DNA nucleotide sequences using microarrays. <i>Biometrics</i> , 2002 , 58, 981-8	1.8	21
116	Selection analyses of insertional mutants using subgenic-resolution arrays. <i>Nature Biotechnology</i> , 2001 , 19, 1060-5	44.5	134
115	Identifying regulatory networks by combinatorial analysis of promoter elements. <i>Nature Genetics</i> , 2001 , 29, 153-9	36.3	519
114	Correlation between transcriptome and interactome mapping data from Saccharomyces cerevisiae. <i>Nature Genetics</i> , 2001 , 29, 482-6	36.3	517
113	Computational comparison of two draft sequences of the human genome. <i>Nature</i> , 2001 , 409, 856-9	50.4	50
112	Exploring the DNA-binding specificities of zinc fingers with DNA microarrays. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2001 , 98, 7158-63	11.5	229
111	Algorithms for identifying protein cross-links via tandem mass spectrometry. <i>Journal of Computational Biology</i> , 2001 , 8, 571-83	1.7	30
110	A dynamic programming approach to de novo peptide sequencing via tandem mass spectrometry. Journal of Computational Biology, 2001 , 8, 325-37	1.7	180
109	A computational analysis of whole-genome expression data reveals chromosomal domains of gene expression. <i>Nature Genetics</i> , 2000 , 26, 183-6	36.3	424
108	RNA expression analysis using a 30 base pair resolution Escherichia coli genome array. <i>Nature Biotechnology</i> , 2000 , 18, 1262-8	44.5	309
107	Microarray analysis of the transcriptional network controlled by the photoreceptor homeobox gene Crx. <i>Current Biology</i> , 2000 , 10, 301-10	6.3	238
106	Conservation of DNA regulatory motifs and discovery of new motifs in microbial genomes. <i>Genome Research</i> , 2000 , 10, 744-57	9.7	145

(1995-2000)

105	Regulatory networks revealed by transcriptional profiling of damaged Saccharomyces cerevisiae cells: Rpn4 links base excision repair with proteasomes. <i>Molecular and Cellular Biology</i> , 2000 , 20, 8157-6	7 ^{4.8}	304
104	Systematic management and analysis of yeast gene expression data. <i>Genome Research</i> , 2000 , 10, 431-4.	5 9.7	80
103	Predicting ligand-binding function in families of bacterial receptors. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2000 , 97, 3965-70	11.5	25
102	Computational identification of cis-regulatory elements associated with groups of functionally related genes in Saccharomyces cerevisiae. <i>Journal of Molecular Biology</i> , 2000 , 296, 1205-14	6.5	806
101	The Isw2 chromatin remodeling complex represses early meiotic genes upon recruitment by Ume6p. <i>Cell</i> , 2000 , 103, 423-33	56.2	255
100	Regulatory Networks Revealed by Transcriptional Profiling of Damaged Saccharomyces cerevisiae Cells: Rpn4 Links Base Excision Repair with Proteasomes. <i>Molecular and Cellular Biology</i> , 2000 , 20, 8157	- 8 187	5
99	In situ localized amplification and contact replication of many individual DNA molecules. <i>Nucleic Acids Research</i> , 1999 , 27, e34	20.1	159
98	A weight matrix for binding recognition by the redox-response regulator ArcA-P of Escherichia coli. <i>Molecular Microbiology</i> , 1999 , 32, 219-21	4.1	25
97	Systematic determination of genetic network architecture. <i>Nature Genetics</i> , 1999 , 22, 281-5	36.3	1911
96	Quantifying DNA-protein interactions by double-stranded DNA arrays. <i>Nature Biotechnology</i> , 1999 , 17, 573-7	44.5	209
95	Alignment and structure prediction of divergent protein families: periplasmic and outer membrane proteins of bacterial efflux pumps. <i>Journal of Molecular Biology</i> , 1999 , 287, 695-715	6.5	148
94	Quantitative whole-genome analysis of DNA-protein interactions by in vivo methylase protection in E. coli. <i>Nature Biotechnology</i> , 1998 , 16, 566-71	44.5	78
93	Finding DNA regulatory motifs within unaligned noncoding sequences clustered by whole-genome mRNA quantitation. <i>Nature Biotechnology</i> , 1998 , 16, 939-45	44.5	732
92	A comprehensive library of DNA-binding site matrices for 55 proteins applied to the complete Escherichia coli K-12 genome. <i>Journal of Molecular Biology</i> , 1998 , 284, 241-54	6.5	287
91	Multiplex sequencing of 1.5 Mb of the Mycobacterium leprae genome. <i>Genome Research</i> , 1997 , 7, 802-1	9 9.7	33
90	Comparing the predicted and observed properties of proteins encoded in the genome of Escherichia coli K-12. <i>Electrophoresis</i> , 1997 , 18, 1259-313	3.6	305
89	Databases for gene expression. <i>Nature Biotechnology</i> , 1996 , 14, 828	44.5	3
88	Retrospective Estimation of Exposures to Confirmed or Suspected Carcinogens in an Electrical Utility. <i>Journal of Occupational and Environmental Hygiene</i> , 1995 , 10, 856-871		

87	Cytosine specific DNA sequencing with hydrogen peroxide. <i>Nucleic Acids Research</i> , 1995 , 23, 4922-3	20.1	6
86	Large scale bacterial gene discovery by similarity search. <i>Nature Genetics</i> , 1994 , 7, 205-14	36.3	41
85	Cloning and sequencing of thiol-specific antioxidant from mammalian brain: alkyl hydroperoxide reductase and thiol-specific antioxidant define a large family of antioxidant enzymes. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1994 , 91, 7017-21	11.5	708
84	DNA sequencing with direct transfer electrophoresis and nonradioactive detection. <i>Methods in Enzymology</i> , 1993 , 218, 187-222	1.7	32
83	A whole genome approach to in vivo DNA-protein interactions in E. coli. <i>Nature</i> , 1992 , 360, 606-10	50.4	65
82	Response : The Dispersion of Neuronal Clones Across the Cerebral Cortex. <i>Science</i> , 1992 , 258, 317-320	33.3	4
81	Response : The Dispersion of Neuronal Clones Across the Cerebral Cortex. <i>Science</i> , 1992 , 258, 317-320	33.3	
80	Complementary recognition in condensed DNA: accelerated DNA renaturation. <i>Journal of Molecular Biology</i> , 1991 , 222, 1085-108	6.5	98
79	Cell-type-specific contacts to immunoglobulin enhancers in nuclei. <i>Nature</i> , 1985 , 313, 798-801	50.4	336
78	YEAST MITOCHONDRIAL INTRON PRODUCTS REQUIRED INTRONS FOR RNA SPLICING 1980 , 379-396		
77	Pleiotropic mutations within two yeast mitochondrial cytochrome genes block mRNA processing. <i>Cell</i> , 1979 , 18, 1209-15	56.2	102
76	Crystal structure of yeast phenylalanine transfer RNA. I. Crystallographic refinement. <i>Journal of Molecular Biology</i> , 1978 , 123, 607-30	6.5	344
75	The cleavage site of the restriction endonuclease Ava II. <i>Nucleic Acids Research</i> , 1978 , 5, 2313-9	20.1	42
74	RNA-ligant interactions. (I) Magnesium binding sites in yeast tRNAPhe. <i>Nucleic Acids Research</i> , 1977 , 4, 2811-20	20.1	212
73	Targeted Genome Editing Techniques in C. elegans and Other Nematode Species3-21		
72	In Vivo Studies of miRNA Target Interactions Using Site-specific Genome Engineering37-51		
71	Genome Editing with Desired Mutations (Knockin) with CRISPR in Model Organisms97-109		
70	Genetically Engineered Pig Models for Human Diseases using ZFNs, TALENs and CRISPR/Cas9110-131		

Gene Editing to Create Agricultural and Biomedical Swine Models132-149 69 68 Generation of New Model Cell Lines using ssODN Knockin Donors and FACS-based Genome Editing 150-162 CRISPR Genome Editing in Mice165-180 67 Detection of Insertion/Deletion (Indel) Events after Genome Targeting: Pros and Cons of the 66 Available Methods181-194 Genome Engineering Using Sleeping Beauty Transposition in Vertebrates 249-269 65 Application of CRISPR for Pooled, Vector-based Functional Genomic Screening in Mammalian Cell Lines 209-222 64 63 Generation and Utilization of CRISPR/Cas9 Screening Libraries in Mammalian Cells223-234 1 Targeted Genome Editing Using Nuclease-assisted Vector Integration 237-248 62 Inducible CRISPR-based Genome Editing for the Characterization of Cancer Genes337-357 61 Use of the CRISPR/Cas9 System for Genome Editing of Immune System Cells, Defense Against 60 HIV-1 and Cancer Therapies 401-413 Regulating Human Genome Editing: Negotiating Ethical Concerns Through Science and Policy454-463 59 Improved bacterial recombineering by parallelized protein discovery 58 Unified rational protein engineering with sequence-based deep representation learning 57 3 Accurate analysis of genuine CRISPR editing events with ampliCan 56 2 Conneconomics: The Economics of Dense, Large-Scale, High-Resolution Neural Connectomics 55 10 Concerning RNA-Guided Gene Drives for the Alteration of Wild Populations 54 21 Rapidly evolving homing CRISPR barcodes 53 4 Evolutionary dynamics of CRISPR gene drives 52 9

51	Daisy-chain gene drives for the alteration of local populations	31
50	Vibrio natriegens, a new genomic powerhouse	24
49	Precise Cas9 targeting enables genomic mutation prevention	3
48	Assembly of Radically Recoded E. coli Genome Segments	2
47	Reprogramming protein kinase substrate specificity through synthetic mutations	3
46	Dissecting limiting factors of the Protein synthesis Using Recombinant Elements (PURE) system	2
45	Rapid Sequential in Situ Multiplexing With DNA-Exchange-Imaging	2
44	Toward D-peptide biosynthesis: Elongation Factor P enables ribosomal incorporation of consecutive D-amino acids	3
43	Recombineering inVibrio natriegens	10
42	Tumor-infiltrating immune repertoires captured by single-cell barcoding in emulsion	16
42 41	Tumor-infiltrating immune repertoires captured by single-cell barcoding in emulsion Long-term adaptive evolution of genomically recodedEscherichia coli	16 5
41	Long-term adaptive evolution of genomically recodedEscherichia coli	5
41 40	Long-term adaptive evolution of genomically recodedEscherichia coli Efficient in situ barcode sequencing using padlock probe-based BaristaSeq	5
41 40 39	Long-term adaptive evolution of genomically recodedEscherichia coli Efficient in situ barcode sequencing using padlock probe-based BaristaSeq Systemic post-translational control of bacterial metabolism regulates adaptation in dynamic environments High-throughput creation and functional profiling of eukaryotic DNA sequence variant libraries	5 3 1
41 40 39 38	Long-term adaptive evolution of genomically recodedEscherichia coli Efficient in situ barcode sequencing using padlock probe-based BaristaSeq Systemic post-translational control of bacterial metabolism regulates adaptation in dynamic environments High-throughput creation and functional profiling of eukaryotic DNA sequence variant libraries using CRISPR/Cas9	5 3 1
41 40 39 38 37	Long-term adaptive evolution of genomically recodedEscherichia coli Efficient in situ barcode sequencing using padlock probe-based BaristaSeq Systemic post-translational control of bacterial metabolism regulates adaptation in dynamic environments High-throughput creation and functional profiling of eukaryotic DNA sequence variant libraries using CRISPR/Cas9 Extensive Mammalian Germline Genome Engineering The predictive power of the microbiome exceeds that of genome-wide association studies in the	5 3 1 1 3

33	Photon-directed Multiplexed Enzymatic DNA Synthesis for Molecular Digital Data Storage	2
32	High throughput functional variant screens via in-vivo production of single-stranded DNA	5
31	Induced Pluripotent Stem Cell-derived CAR-Macrophage Cells with Antigen-dependent Anti-Cancer Cell Functions for Liquid and Solid Tumors	2
30	Fluorescent in situ sequencing of DNA barcoded antibodies	2
29	Expansion Sequencing: Spatially Precise In Situ Transcriptomics in Intact Biological Systems	9
28	Multi-pronged human protein mimicry by SARS-CoV-2 reveals bifurcating potential for MHC detection and immune evasion	1
27	An orthogonal differentiation platform for genomically programming stem cells, organoids, and bioprinted tissues	1
26	A DNA nanoscope that identifies and precisely localizes over a hundred unique molecular features with nanometer accuracy	1
25	Current CRISPR gene drive systems are likely to be highly invasive in wild populations	10
24	Significant abundance of cis configurations of mutations in diploid human genomes	2
23	Multiplexed in situ protein imaging using DNA-barcoded antibodies with extended hybridization chain reactions	8
22	A homing CRISPR mouse resource for barcoding and lineage tracing	3
21	Barcoded oligonucleotides ligated on RNA amplified for multiplex and parallel in-situ analyses	6
20	Rational design of a compact CRISPR-Cas9 activator for AAV-mediated delivery	8
19	Enhanced bacterial immunity and mammalian genome editing via RNA polymerase-mediated dislodging of Cas9 from double strand DNA breaks	1
18	Establishing a cell-freeVibrio natriegensexpression system	3
17	Toward machine-guided design of proteins	15
16	Enzymatic DNA synthesis for digital information storage	7

15	Highly multiplexedin situprotein imaging with signal amplification by Immuno-SABER	2
14	Rapid and scalable in vitro production of single-stranded DNA	4
13	Enabling large-scale genome editing by reducing DNA nicking	10
12	Unified rational protein engineering with sequence-only deep representation learning	20
11	Recording temporal data onto DNA with minutes resolution	2
10	A robust benchmark for germline structural variant detection	34
9	Citizen-Centered, Auditable, and Privacy-Preserving Population Genomics	2
8	Genetic design automation for autonomous formation of multicellular shapes from a single cell progenitor	1
7	Deep Learning for RNA Synthetic Biology	4
6	Physiological assembly of functionally active 30S ribosomal subunits fromin vitrosynthesized parts	1
5	Engineering post-translational proofreading to discriminate non-standard amino acids	1
4	Biosensor libraries harness large classes of binding domains for allosteric transcription regulators	1
3	Generative AAV capsid diversification by latent interpolation	1
2	Reconstructing transcriptional histories by CRISPR acquisition of retron-based genetic barcodes	2
1	Single-sequence protein structure prediction using language models from deep learning	9