List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/590084/publications.pdf Version: 2024-02-01

		143	265
544	104,427	157	298
papers	citations	h-index	g-index
653	653	653	99638
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	RNA-Guided Human Genome Engineering via Cas9. Science, 2013, 339, 823-826.	12.6	8,009
2	Systematic determination of genetic network architecture. Nature Genetics, 1999, 22, 281-285.	21.4	2,251
3	A Logic-Gated Nanorobot for Targeted Transport of Molecular Payloads. Science, 2012, 335, 831-834.	12.6	1,918
4	CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nature Biotechnology, 2013, 31, 833-838.	17.5	1,589
5	Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Research, 2013, 41, 4336-4343.	14.5	1,374
6	Programming cells by multiplex genome engineering and accelerated evolution. Nature, 2009, 460, 894-898.	27.8	1,346
7	Multiplex and homologous recombination–mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nature Biotechnology, 2013, 31, 688-691.	17.5	1,280
8	Highly efficient Cas9-mediated transcriptional programming. Nature Methods, 2015, 12, 326-328.	19.0	1,245
9	Analysis of optimality in natural and perturbed metabolic networks. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 15112-15117.	7.1	1,244
10	Accurate Multiplex Polony Sequencing of an Evolved Bacterial Genome. Science, 2005, 309, 1728-1732.	12.6	1,189
11	Assessing computational tools for the discovery of transcription factor binding sites. Nature Biotechnology, 2005, 23, 137-144.	17.5	1,121
12	Human Genome Sequencing Using Unchained Base Reads on Self-Assembling DNA Nanoarrays. Science, 2010, 327, 78-81.	12.6	1,085
13	Cas9 as a versatile tool for engineering biology. Nature Methods, 2013, 10, 957-963.	19.0	1,073
14	Rapid prototyping of 3D DNA-origami shapes with caDNAno. Nucleic Acids Research, 2009, 37, 5001-5006.	14.5	1,054
15	CHOPCHOP: a CRISPR/Cas9 and TALEN web tool for genome editing. Nucleic Acids Research, 2014, 42, W401-W407.	14.5	997
16	Targeted and genome-scale strategies reveal gene-body methylation signatures in human cells. Nature Biotechnology, 2009, 27, 361-368.	17.5	985
17	A Deep Learning Approach to Antibiotic Discovery. Cell, 2020, 180, 688-702.e13.	28.9	978
18	Computational identification of Cis -regulatory elements associated with groups of functionally related genes in Saccharomyces cerevisiae 1 1Edited by F. E. Cohen. Journal of Molecular Biology, 2000, 296, 1205-1214.	4.2	915

#	Article	IF	CITATIONS
19	Next-Generation Digital Information Storage in DNA. Science, 2012, 337, 1628-1628.	12.6	902
20	In vivo gene editing in dystrophic mouse muscle and muscle stem cells. Science, 2016, 351, 407-411.	12.6	889
21	Finding DNA regulatory motifs within unaligned noncoding sequences clustered by whole-genome mRNA quantitation. Nature Biotechnology, 1998, 16, 939-945.	17.5	835
22	Heritable genome editing in C. elegans via a CRISPR-Cas9 system. Nature Methods, 2013, 10, 741-743.	19.0	825
23	Highly Multiplexed Subcellular RNA Sequencing in Situ. Science, 2014, 343, 1360-1363.	12.6	824
24	Cloning and sequencing of thiol-specific antioxidant from mammalian brain: alkyl hydroperoxide reductase and thiol-specific antioxidant define a large family of antioxidant enzymes Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 7017-7021.	7.1	768
25	Functional Characterization of the Antibiotic Resistance Reservoir in the Human Microflora. Science, 2009, 325, 1128-1131.	12.6	748
26	Orthogonal Cas9 proteins for RNA-guided gene regulation and editing. Nature Methods, 2013, 10, 1116-1121.	19.0	740
27	Optical control of mammalian endogenous transcription and epigenetic states. Nature, 2013, 500, 472-476.	27.8	733
28	Modeling the mitochondrial cardiomyopathy of Barth syndrome with induced pluripotent stem cell and heart-on-chip technologies. Nature Medicine, 2014, 20, 616-623.	30.7	733
29	DNA sequencing at 40: past, present and future. Nature, 2017, 550, 345-353.	27.8	729
30	Genomically Recoded Organisms Expand Biological Functions. Science, 2013, 342, 357-360.	12.6	721
31	Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription. Nature Biotechnology, 2011, 29, 149-153.	17.5	708
32	Unified rational protein engineering with sequence-based deep representation learning. Nature Methods, 2019, 16, 1315-1322.	19.0	680
33	Concerning RNA-guided gene drives for the alteration of wild populations. ELife, 2014, 3, .	6.0	653
34	Meta-analysis of age-related gene expression profiles identifies common signatures of aging. Bioinformatics, 2009, 25, 875-881.	4.1	651
35	Large-scale de novo DNA synthesis: technologies and applications. Nature Methods, 2014, 11, 499-507.	19.0	644
36	Clinical assessment incorporating a personal genome. Lancet, The, 2010, 375, 1525-1535.	13.7	637

#	Article	IF	CITATIONS
37	Identifying regulatory networks by combinatorial analysis of promoter elements. Nature Genetics, 2001, 29, 153-159.	21.4	585
38	Extensive sequencing of seven human genomes to characterize benchmark reference materials. Scientific Data, 2016, 3, 160025.	5.3	575
39	Correlation between transcriptome and interactome mapping data from Saccharomyces cerevisiae. Nature Genetics, 2001, 29, 482-486.	21.4	570
40	Inactivation of porcine endogenous retrovirus in pigs using CRISPR-Cas9. Science, 2017, 357, 1303-1307.	12.6	570
41	Modular epistasis in yeast metabolism. Nature Genetics, 2005, 37, 77-83.	21.4	552
42	A prudent path forward for genomic engineering and germline gene modification. Science, 2015, 348, 36-38.	12.6	541
43	Identification of many microRNAs that copurify with polyribosomes in mammalian neurons. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 360-365.	7.1	528
44	Synthetic Gene Networks That Count. Science, 2009, 324, 1199-1202.	12.6	528
45	Precise Manipulation of Chromosomes in Vivo Enables Genome-Wide Codon Replacement. Science, 2011, 333, 348-353.	12.6	512
46	The Brain Activity Map Project and the Challenge of Functional Connectomics. Neuron, 2012, 74, 970-974.	8.1	512
47	Genome-wide inactivation of porcine endogenous retroviruses (PERVs). Science, 2015, 350, 1101-1104.	12.6	511
48	Titin mutations in iPS cells define sarcomere insufficiency as a cause of dilated cardiomyopathy. Science, 2015, 349, 982-986.	12.6	508
49	A multifunctional AAV–CRISPR–Cas9 and its host response. Nature Methods, 2016, 13, 868-874.	19.0	506
50	Advanced sequencing technologies: methods and goals. Nature Reviews Genetics, 2004, 5, 335-344.	16.3	499
51	Bacteria Subsisting on Antibiotics. Science, 2008, 320, 100-103.	12.6	499
52	Syntrophic exchange in synthetic microbial communities. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E2149-56.	7.1	498
53	Causes and Effects of N-Terminal Codon Bias in Bacterial Genes. Science, 2013, 342, 475-479.	12.6	491
54	A computational analysis of whole-genome expression data reveals chromosomal domains of gene expression. Nature Genetics, 2000, 26, 183-186.	21.4	485

#	Article	IF	CITATIONS
55	Genome-Wide Identification of Human RNA Editing Sites by Parallel DNA Capturing and Sequencing. Science, 2009, 324, 1210-1213.	12.6	483
56	Meta-omics analysis of elite athletes identifies a performance-enhancing microbe that functions via lactate metabolism. Nature Medicine, 2019, 25, 1104-1109.	30.7	477
57	Photosynthesis genes in marine viruses yield proteins during host infection. Nature, 2005, 438, 86-89.	27.8	470
58	Patterns and Implications of Gene Gain and Loss in the Evolution of Prochlorococcus. PLoS Genetics, 2007, 3, e231.	3.5	469
59	Tuberculosis Drug Resistance Mutation Database. PLoS Medicine, 2009, 6, e1000002.	8.4	458
60	Comparison of Cas9 activators in multiple species. Nature Methods, 2016, 13, 563-567.	19.0	438
61	Reprogramming to recover youthful epigenetic information and restore vision. Nature, 2020, 588, 124-129.	27.8	424
62	Fluorescent in situ sequencing (FISSEQ) of RNA for gene expression profiling in intact cells and tissues. Nature Protocols, 2015, 10, 442-458.	12.0	422
63	B cells populating the multiple sclerosis brain mature in the draining cervical lymph nodes. Science Translational Medicine, 2014, 6, 248ra107.	12.4	394
64	Multiplex amplification of large sets of human exons. Nature Methods, 2007, 4, 931-936.	19.0	392
65	Generation of functional human hepatic endoderm from human induced pluripotent stem cells. Hepatology, 2010, 51, 329-335.	7.3	389
66	Sequencing genomes from single cells by polymerase cloning. Nature Biotechnology, 2006, 24, 680-686.	17.5	388
67	From genetic privacy to open consent. Nature Reviews Genetics, 2008, 9, 406-411.	16.3	385
68	pLogo: a probabilistic approach to visualizing sequence motifs. Nature Methods, 2013, 10, 1211-1212.	19.0	384
69	Accurate multiplex gene synthesis from programmable DNA microchips. Nature, 2004, 432, 1050-1054.	27.8	379
70	Crystal structure of yeast phenylalanine transfer RNA. Journal of Molecular Biology, 1978, 123, 607-630.	4.2	377
71	Composability of regulatory sequences controlling transcription and translation in <i>Escherichia coli</i> . Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 14024-14029.	7.1	377
72	Mature induced-pluripotent-stem-cell-derived human podocytes reconstitute kidney glomerular-capillary-wall function on a chip. Nature Biomedical Engineering, 2017, 1, .	22.5	376

#	Article	IF	CITATIONS
73	The promise of organ and tissue preservation to transform medicine. Nature Biotechnology, 2017, 35, 530-542.	17.5	371
74	Programmable transcriptional repression in mycobacteria using an orthogonal CRISPR interference platform. Nature Microbiology, 2017, 2, 16274.	13.3	368
75	Unraveling CRISPR-Cas9 genome engineering parameters via a library-on-library approach. Nature Methods, 2015, 12, 823-826.	19.0	361
76	An enhanced CRISPR repressor for targeted mammalian gene regulation. Nature Methods, 2018, 15, 611-616.	19.0	361
77	Towards synthesis of a minimal cell. Molecular Systems Biology, 2006, 2, 45.	7.2	360
78	Cell-type-specific contacts to immunoglobulin enhancers in nuclei. Nature, 1985, 313, 798-801.	27.8	358
79	Optimization of scarless human stem cell genome editing. Nucleic Acids Research, 2013, 41, 9049-9061.	14.5	358
80	Biocontainment of genetically modified organisms by synthetic protein design. Nature, 2015, 518, 55-60.	27.8	345
81	RNA expression analysis using a 30 base pair resolution Escherichia coli genome array. Nature Biotechnology, 2000, 18, 1262-1268.	17.5	340
82	Comparing the predicted and observed properties of proteins encoded in the genome ofEscherichia coli K-12. Electrophoresis, 1997, 18, 1259-1313.	2.4	338
83	Regulatory Networks Revealed by Transcriptional Profiling of Damaged Saccharomyces cerevisiae Cells: Rpn4 Links Base Excision Repair with Proteasomes. Molecular and Cellular Biology, 2000, 20, 8157-8167.	2.3	329
84	Ethical and Practical Guidelines for Reporting Genetic Research Results to Study Participants. Circulation: Cardiovascular Genetics, 2010, 3, 574-580.	5.1	328
85	Nanotools for Neuroscience and Brain Activity Mapping. ACS Nano, 2013, 7, 1850-1866.	14.6	323
86	A comprehensive library of DNA-binding site matrices for 55 proteins applied to the complete Escherichia coli K-12 genome 1 1Edited by R. Ebright. Journal of Molecular Biology, 1998, 284, 241-254.	4.2	319
87	Global RNA Half-Life Analysis in Escherichia coli Reveals Positional Patterns of Transcript Degradation. Genome Research, 2003, 13, 216-223.	5.5	318
88	Preferred analysis methods for Affymetrix GeneChips revealed by a wholly defined control dataset. Genome Biology, 2005, 6, R16.	9.6	318
89	Genome-Scale Metabolic Model of Helicobacter pylori 26695. Journal of Bacteriology, 2002, 184, 4582-4593.	2.2	317
90	Genome-wide expression dynamics of a marine virus and host reveal features of co-evolution. Nature, 2007. 449. 83-86.	27.8	316

#	Article	IF	CITATIONS
91	Nanoscale imaging of RNA with expansion microscopy. Nature Methods, 2016, 13, 679-684.	19.0	314
92	Proteogenomic mapping as a complementary method to perform genome annotation. Proteomics, 2004, 4, 59-77.	2.2	305
93	Immuno-SABER enables highly multiplexed and amplified protein imaging in tissues. Nature Biotechnology, 2019, 37, 1080-1090.	17.5	301
94	A highly annotated whole-genome sequence of a Korean individual. Nature, 2009, 460, 1011-1015.	27.8	295
95	An Analysis of the Relationship Between Metabolism, Developmental Schedules, and Longevity Using Phylogenetic Independent Contrasts. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2007, 62, 149-160.	3.6	293
96	Safeguarding CRISPR-Cas9 gene drives in yeast. Nature Biotechnology, 2015, 33, 1250-1255.	17.5	291
97	Computational and Experimental Identification of C. elegans microRNAs. Molecular Cell, 2003, 11, 1253-1263.	9.7	289
98	Reprogramming of T Cells from Human Peripheral Blood. Cell Stem Cell, 2010, 7, 15-19.	11.1	288
99	Regulating gene drives. Science, 2014, 345, 626-628.	12.6	287
100	Quantitative Morphological Signatures Define Local Signaling Networks Regulating Cell Morphology. Science, 2007, 316, 1753-1756.	12.6	286
101	Nucleotides of transcription factor binding sites exert interdependent effects on the binding affinities of transcription factors. Nucleic Acids Research, 2002, 30, 1255-1261.	14.5	282
102	The Isw2 Chromatin Remodeling Complex Represses Early Meiotic Genes upon Recruitment by Ume6p. Cell, 2000, 103, 423-433.	28.9	280
103	Insights into the Evolution of Longevity from the Bowhead Whale Genome. Cell Reports, 2015, 10, 112-122.	6.4	280
104	Improving molecular cancer class discovery through sparse non-negative matrix factorization. Bioinformatics, 2005, 21, 3970-3975.	4.1	278
105	Engineering an allosteric transcription factor to respond to new ligands. Nature Methods, 2016, 13, 177-183.	19.0	274
106	Cas9 gRNA engineering for genome editing, activation and repression. Nature Methods, 2015, 12, 1051-1054.	19.0	272
107	Autoantigen discovery with a synthetic human peptidome. Nature Biotechnology, 2011, 29, 535-541.	17.5	267
108	The role of replicates for error mitigation in next-generation sequencing. Nature Reviews Genetics, 2014, 15, 56-62.	16.3	267

#	Article	IF	CITATIONS
109	Exploring the DNA-binding specificities of zinc fingers with DNA microarrays. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 7158-7163.	7.1	263
110	Developmental barcoding of whole mouse via homing CRISPR. Science, 2018, 361, .	12.6	263
111	Identification of a Novel cis-Regulatory Element Involved in the Heat Shock Response in Caenorhabditis elegans Using Microarray Gene Expression and Computational Methods. Genome Research, 2002, 12, 701-712.	5.5	262
112	Nucleic acid memory. Nature Materials, 2016, 15, 366-370.	27.5	261
113	Safeguarding gene drive experiments in the laboratory. Science, 2015, 349, 927-929.	12.6	254
114	CRISPR–Cas encoding of a digital movie into the genomes of a population of living bacteria. Nature, 2017, 547, 345-349.	27.8	254
115	Microarray analysis of the transcriptional network controlled by the photoreceptor homeobox gene Crx. Current Biology, 2000, 10, 301-310.	3.9	252
116	Submicrometre geometrically encoded fluorescent barcodes self-assembled from DNA. Nature Chemistry, 2012, 4, 832-839.	13.6	252
117	Design, synthesis, and testing toward a 57-codon genome. Science, 2016, 353, 819-822.	12.6	251
118	Regulatory network of acid resistance genes in Escherichia coli. Molecular Microbiology, 2003, 48, 699-712.	2.5	250
119	The Three-Dimensional Architecture of a Bacterial Genome and Its Alteration by Genetic Perturbation. Molecular Cell, 2011, 44, 252-264.	9.7	249
120	Measuring absolute expression with microarrays with a calibrated reference sample and an extended signal intensity range. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 7554-7559.	7.1	248
121	Relationships between p63 Binding, DNA Sequence, Transcription Activity, and Biological Function in Human Cells. Molecular Cell, 2006, 24, 593-602.	9.7	248
122	Extensive phosphorylation with overlapping specificity by <i>Mycobacterium tuberculosis</i> serine/threonine protein kinases. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 7521-7526.	7.1	245
123	Evolution-guided optimization of biosynthetic pathways. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 17803-17808.	7.1	242
124	RNA - ligand interactions:(I) magnesium binding sites in yeast tRNAPhe. Nucleic Acids Research, 1977, 4, 2811-2820.	14.5	238
125	An Integrated Genome-wide CRISPRa Approach to Functionalize IncRNAs in Drug Resistance. Cell, 2018, 173, 649-664.e20.	28.9	238
126	Scalable gene synthesis by selective amplification of DNA pools from high-fidelity microchips. Nature Biotechnology, 2010, 28, 1295-1299.	17.5	235

#	Article	IF	CITATIONS
127	A robust benchmark for detection of germline large deletions and insertions. Nature Biotechnology, 2020, 38, 1347-1355.	17.5	233
128	Quantifying DNA–protein interactions by double-stranded DNA arrays. Nature Biotechnology, 1999, 17, 573-577.	17.5	232
129	The challenges of sequencing by synthesis. Nature Biotechnology, 2009, 27, 1013-1023.	17.5	232
130	Accurate whole-genome sequencing and haplotyping from 10 to 20 human cells. Nature, 2012, 487, 190-195.	27.8	226
131	The Complete Genome and Proteome of <i>Mycoplasma mobile</i> . Genome Research, 2004, 14, 1447-1461.	5.5	224
132	Comprehensive AAV capsid fitness landscape reveals a viral gene and enables machine-guided design. Science, 2019, 366, 1139-1143.	12.6	217
133	A Dynamic Programming Approach to De Novo Peptide Sequencing via Tandem Mass Spectrometry. Journal of Computational Biology, 2001, 8, 325-337.	1.6	215
134	Genome engineering. Nature Biotechnology, 2009, 27, 1151-1162.	17.5	215
135	Physical principles for scalable neural recording. Frontiers in Computational Neuroscience, 2013, 7, 137.	2.1	215
136	Rates, distribution and implications of postzygotic mosaic mutations in autism spectrum disorder. Nature Neuroscience, 2017, 20, 1217-1224.	14.8	212
137	Low-N protein engineering with data-efficient deep learning. Nature Methods, 2021, 18, 389-396.	19.0	212
138	The Scientific Foundation for Personal Genomics: Recommendations from a National Institutes of Health–Centers for Disease Control and Prevention Multidisciplinary Workshop. Genetics in Medicine, 2009, 11, 559-567.	2.4	207
139	Genome-scale promoter engineering by coselection MAGE. Nature Methods, 2012, 9, 591-593.	19.0	207
140	Forward Error Correction for DNA Data Storage. Procedia Computer Science, 2016, 80, 1011-1022.	2.0	203
141	In situ localized amplification and contact replication of many individual DNA molecules. Nucleic Acids Research, 1999, 27, 34e-34.	14.5	202
142	Automated modelling of signal transduction networks. BMC Bioinformatics, 2002, 3, 34.	2.6	198
143	Biosensor-based engineering of biosynthetic pathways. Current Opinion in Biotechnology, 2016, 42, 84-91.	6.6	198
144	Expansion sequencing: Spatially precise in situ transcriptomics in intact biological systems. Science, 2021, 371, .	12.6	197

#	Article	IF	CITATIONS
145	Realizing the potential of synthetic biology. Nature Reviews Molecular Cell Biology, 2014, 15, 289-294.	37.0	196
146	The Transition between Transcriptional Initiation and Elongation in E. coli Is Highly Variable and Often Rate Limiting. Molecular Cell, 2006, 24, 747-757.	9.7	194
147	A public resource facilitating clinical use of genomes. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 11920-11927.	7.1	194
148	The Genome Project-Write. Science, 2016, 353, 126-127.	12.6	194
149	Synthetic biosensors for precise gene control and real-time monitoring of metabolites. Nucleic Acids Research, 2015, 43, 7648-7660.	14.5	193
150	†Fit-for-purpose?' – challenges and opportunities for applications of blockchain technology in the future of healthcare. BMC Medicine, 2019, 17, 68.	5.5	193
151	sgRNA Scorer 2.0: A Species-Independent Model To Predict CRISPR/Cas9 Activity. ACS Synthetic Biology, 2017, 6, 902-904.	3.8	189
152	Rapid neurogenesis through transcriptional activation in human stem cells. Molecular Systems Biology, 2014, 10, 760.	7.2	187
153	High-resolution antibody dynamics of vaccine-induced immune responses. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 4928-4933.	7.1	186
154	Iterative capped assembly: rapid and scalable synthesis of repeat-module DNA such as TAL effectors from individual monomers. Nucleic Acids Research, 2012, 40, e117-e117.	14.5	185
155	Polony Multiplex Analysis of Gene Expression (PMAGE) in Mouse Hypertrophic Cardiomyopathy. Science, 2007, 316, 1481-1484.	12.6	182
156	The Brain Activity Map. Science, 2013, 339, 1284-1285.	12.6	181
157	Conservation of DNA Regulatory Motifs and Discovery of New Motifs in Microbial Genomes. Genome Research, 2000, 10, 744-757.	5.5	180
158	Molecular recordings by directed CRISPR spacer acquisition. Science, 2016, 353, aaf1175.	12.6	179
159	Rapidly evolving homing CRISPR barcodes. Nature Methods, 2017, 14, 195-200.	19.0	179
160	Codon usage of highly expressed genes affects proteome-wide translation efficiency. Proceedings of the United States of America, 2018, 115, E4940-E4949.	7.1	177
161	The amino-acid mutational spectrum of human genetic disease. Genome Biology, 2003, 4, R72.	9.6	176
162	The Effects of Somatic Hypermutation on Neutralization and Binding in the PGT121 Family of Broadly Neutralizing HIV Antibodies. PLoS Pathogens, 2013, 9, e1003754.	4.7	175

#	Article	IF	CITATIONS
163	The Human Ageing Genomic Resources: online databases and tools for biogerontologists. Aging Cell, 2009, 8, 65-72.	6.7	173
164	A Microarray-Based Antibiotic Screen Identifies a Regulatory Role for Supercoiling in the Osmotic Stress Response of Escherichia coli. Genome Research, 2003, 13, 206-215.	5.5	172
165	Elevated Coding Mutation Rate During the Reprogramming of Human Somatic Cells into Induced Pluripotent Stem Cells. Stem Cells, 2012, 30, 435-440.	3.2	172
166	Evolutionary dynamics of CRISPR gene drives. Science Advances, 2017, 3, e1601964.	10.3	172
167	Pluripotent stem cell-derived CAR-macrophage cells with antigen-dependent anti-cancer cell functions. Journal of Hematology and Oncology, 2020, 13, 153.	17.0	172
168	Multisystem inflammatory syndrome in children is driven by zonulin-dependent loss of gut mucosal barrier. Journal of Clinical Investigation, 2021, 131, .	8.2	170
169	The human microbiome harbors a diverse reservoir of antibiotic resistance genes. Virulence, 2010, 1, 299-303.	4.4	166
170	Engineering Life: Building a FAB for Biology. Scientific American, 2006, 294, 44-51.	1.0	165
171	Deep diversification of an AAV capsid protein by machine learning. Nature Biotechnology, 2021, 39, 691-696.	17.5	165
172	Systematic identification of edited microRNAs in the human brain. Genome Research, 2012, 22, 1533-1540.	5.5	163
173	Lambda Red Recombineering in <i>Escherichia coli</i> Occurs Through a Fully Single-Stranded Intermediate. Genetics, 2010, 186, 791-799.	2.9	161
174	Alignment and structure prediction of divergent protein families: periplasmic and outer membrane proteins of bacterial efflux pumps. Journal of Molecular Biology, 1999, 287, 695-715.	4.2	159
175	<i>Escherichia coli</i> Gene Expression Responsive to Levels of the Response Regulator EvgA. Journal of Bacteriology, 2002, 184, 6225-6234.	2.2	159
176	Fluorescent in situ sequencing on polymerase colonies. Analytical Biochemistry, 2003, 320, 55-65.	2.4	159
177	Genetically encoded sensors enable real-time observation of metabolite production. Proceedings of the United States of America, 2016, 113, 2388-2393.	7.1	155
178	Daisy-chain gene drives for the alteration of local populations. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 8275-8282.	7.1	154
179	Regulation of lifespan by neural excitation and REST. Nature, 2019, 574, 359-364.	27.8	153
180	Computational discovery of sense-antisense transcription in the human and mouse genomes. Genome Biology, 2002, 3, research0044.1.	9.6	152

11

#	Article	IF	CITATIONS
181	Synthetic biology projects in vitro. Genome Research, 2006, 17, 1-6.	5.5	151
182	Clobal gene expression of Prochlorococcus ecotypes in response to changes in nitrogen availability. Molecular Systems Biology, 2006, 2, 53.	7.2	150
183	REST and Neural Gene Network Dysregulation in iPSC Models of Alzheimer's Disease. Cell Reports, 2019, 26, 1112-1127.e9.	6.4	150
184	Digital RNA allelotyping reveals tissue-specific and allele-specific gene expression in human. Nature Methods, 2009, 6, 613-618.	19.0	149
185	Functional genomics of the rapidly replicating bacterium Vibrio natriegens by CRISPRi. Nature Microbiology, 2019, 4, 1105-1113.	13.3	148
186	Multi-kilobase homozygous targeted gene replacement in human induced pluripotent stem cells. Nucleic Acids Research, 2015, 43, e21-e21.	14.5	147
187	A general strategy to construct small molecule biosensors in eukaryotes. ELife, 2015, 4, .	6.0	145
188	A sequence-oriented comparison of gene expression measurements across different hybridization-based technologies. Nature Biotechnology, 2006, 24, 832-840.	17.5	144
189	Largeâ€scale identification of genetic design strategies using local search. Molecular Systems Biology, 2009, 5, 296.	7.2	143
190	Digital genotyping and haplotyping with polymerase colonies. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 5926-5931.	7.1	141
191	In situ genome sequencing resolves DNA sequence and structure in intact biological samples. Science, 2021, 371, .	12.6	141
192	Selection analyses of insertional mutants using subgenic-resolution arrays. Nature Biotechnology, 2001, 19, 1060-1065.	17.5	140
193	<i>In vitro</i> integration of ribosomal RNA synthesis, ribosome assembly, and translation. Molecular Systems Biology, 2013, 9, 678.	7.2	140
194	Genomic analysis of LexA binding reveals the permissive nature of the Escherichia coli genome and identifies unconventional target sites. Genes and Development, 2005, 19, 2619-2630.	5.9	138
195	Phased Whole-Genome Genetic Risk in a Family Quartet Using a Major Allele Reference Sequence. PLoS Genetics, 2011, 7, e1002280.	3.5	137
196	Tools for the Microbiome: Nano and Beyond. ACS Nano, 2016, 10, 6-37.	14.6	137
197	Genome editing assessment using CRISPR Genome Analyzer (CRISPR-GA). Bioinformatics, 2014, 30, 2968-2970.	4.1	136
198	A CRISPR–Cas9-based gene drive platform for genetic interaction analysis in Candida albicans. Nature Microbiology, 2018, 3, 73-82.	13.3	135

#	Article	IF	CITATIONS
199	PEPPeR, a Platform for Experimental Proteomic Pattern Recognition. Molecular and Cellular Proteomics, 2006, 5, 1927-1941.	3.8	133
200	Yeast Oligo-Mediated Genome Engineering (YOGE). ACS Synthetic Biology, 2013, 2, 741-749.	3.8	133
201	Current CRISPR gene drive systems are likely to be highly invasive in wild populations. ELife, 2018, 7, .	6.0	133
202	Terminator-free template-independent enzymatic DNA synthesis for digital information storage. Nature Communications, 2019, 10, 2383.	12.8	133
203	Targeted and genome-wide sequencing reveal single nucleotide variations impacting specificity of Cas9 in human stem cells. Nature Communications, 2014, 5, 5507.	12.8	128
204	Identifying regulatory mechanisms using individual variation reveals key role for chromatin modification. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 14062-14067.	7.1	126
205	Heritable Custom Genomic Modifications in <i>Caenorhabditis elegans</i> via a CRISPR–Cas9 System. Genetics, 2013, 195, 1181-1185.	2.9	126
206	Deciphering the functions and regulation of brain-enriched A-to-I RNA editing. Nature Neuroscience, 2013, 16, 1518-1522.	14.8	125
207	Directed differentiation of human induced pluripotent stem cells into mature kidney podocytes and establishment of a Glomerulus Chip. Nature Protocols, 2018, 13, 1662-1685.	12.0	125
208	Probing the Limits of Genetic Recoding in Essential Genes. Science, 2013, 342, 361-363.	12.6	121
209	Efficient in situ barcode sequencing using padlock probe-based BaristaSeq. Nucleic Acids Research, 2018, 46, e22-e22.	14.5	120
210	Multiplexed Genome Engineering and Genotyping Methods. Methods in Enzymology, 2011, 498, 409-426.	1.0	119
211	L1CAM is not associated with extracellular vesicles in human cerebrospinal fluid or plasma. Nature Methods, 2021, 18, 631-634.	19.0	118
212	Extensive germline genome engineering in pigs. Nature Biomedical Engineering, 2021, 5, 134-143.	22.5	117
213	A new dawn for industrial photosynthesis. Photosynthesis Research, 2011, 107, 269-277.	2.9	116
214	Rapid Sequential in Situ Multiplexing with DNA Exchange Imaging in Neuronal Cells and Tissues. Nano Letters, 2017, 17, 6131-6139.	9.1	116
215	Real-time single-molecule electronic DNA sequencing by synthesis using polymer-tagged nucleotides on a nanopore array. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 5233-5238.	7.1	114
216	Enhanced Bacterial Immunity and Mammalian Genome Editing via RNA-Polymerase-Mediated Dislodging of Cas9 from Double-Strand DNA Breaks. Molecular Cell, 2018, 71, 42-55.e8.	9.7	112

#	Article	IF	CITATIONS
217	Pleiotropic mutations within two yeast mitochondrial cytochrome genes block mRNA processing. Cell, 1979, 18, 1209-1215.	28.9	111
218	Genomes for All. Scientific American, 2006, 294, 46-54.	1.0	110
219	A comprehensive library of human transcription factors for cell fate engineering. Nature Biotechnology, 2021, 39, 510-519.	17.5	110
220	Chromosome-scale, haplotype-resolved assembly of human genomes. Nature Biotechnology, 2021, 39, 309-312.	17.5	109
221	Barcoding bias in high-throughput multiplex sequencing of miRNA. Genome Research, 2011, 21, 1506-1511.	5.5	107
222	MapQuant: Open-source software for large-scale protein quantification. Proteomics, 2006, 6, 1770-1782.	2.2	106
223	Complementary recognition in condensed DNA: Accelerated DNA renaturation. Journal of Molecular Biology, 1991, 222, 1085-1108.	4.2	105
224	Mammalian ultraconserved elements are strongly depleted among segmental duplications and copy number variants. Nature Genetics, 2006, 38, 1216-1220.	21.4	105
225	Implications of antibody-dependent enhancement of infection for SARS-CoV-2 countermeasures. Nature Biotechnology, 2020, 38, 789-791.	17.5	104
226	Systematic Management and Analysis of Yeast Gene Expression Data. Genome Research, 2000, 10, 431-445.	5.5	102
227	Localization to the Proteasome Is Sufficient for Degradation. Journal of Biological Chemistry, 2004, 279, 21415-21420.	3.4	100
228	Genomes Optimize Reproduction: Aging as a Consequence of the Developmental Program. Physiology, 2005, 20, 252-259.	3.1	100
229	3D mapping and accelerated super-resolution imaging of the human genome using in situ sequencing. Nature Methods, 2020, 17, 822-832.	19.0	99
230	Engineering adeno-associated viral vectors to evade innate immune and inflammatory responses. Science Translational Medicine, 2021, 13, .	12.4	99
231	Long-range polony haplotyping of individual human chromosome molecules. Nature Genetics, 2006, 38, 382-387.	21.4	97
232	DNA synthesis and biological security. Nature Biotechnology, 2007, 25, 627-629.	17.5	97
233	Efficient, footprint-free human iPSC genome editing by consolidation of Cas9/CRISPR and piggyBac technologies. Nature Protocols, 2017, 12, 88-103.	12.0	97
234	Cells discover fire: Employing reactive oxygen species in developmentand consequences for aging. Experimental Gerontology, 2006, 41, 1-10.	2.8	96

#	Article	IF	CITATIONS
235	Predicting Protein Post-translational Modifications Using Meta-analysis of Proteome Scale Data Sets. Molecular and Cellular Proteomics, 2009, 8, 365-379.	3.8	96
236	Computational Identification of Transcription Factor Binding Sites via a Transcription-factor-centric Clustering (TFCC) Algorithm. Journal of Molecular Biology, 2002, 318, 71-81.	4.2	95
237	Single Molecule Profiling of Alternative Pre-mRNA Splicing. Science, 2003, 301, 836-838.	12.6	93
238	Gene Expression Profiling Reveals Progesterone-Mediated Cell Cycle and Immunoregulatory Roles of Hoxa-10 in the Preimplantation Uterus. Molecular Endocrinology, 2003, 17, 610-627.	3.7	92
239	Genomic Studies with Escherichia coli MelR Protein: Applications of Chromatin Immunoprecipitation and Microarrays. Journal of Bacteriology, 2004, 186, 6938-6943.	2.2	92
240	Essential genes as antimicrobial targets and cornerstones of synthetic biology. Trends in Biotechnology, 2012, 30, 601-607.	9.3	92
241	RNA Sequencing Reveals Differential Expression of Mitochondrial and Oxidation Reduction Genes in the Long-Lived Naked Mole-Rat When Compared to Mice. PLoS ONE, 2011, 6, e26729.	2.5	91
242	Harvard Personal Genome Project: lessons from participatory public research. Genome Medicine, 2014, 6, 10.	8.2	90
243	Quantitative whole-genome analysis of DNA-protein interactions by in vivo methylase protection in E. coli. Nature Biotechnology, 1998, 16, 566-571.	17.5	89
244	Enhanced multiplex genome engineering through co-operative oligonucleotide co-selection. Nucleic Acids Research, 2012, 40, e132-e132.	14.5	89
245	Material solutions for delivery of CRISPR/Cas-based genome editing tools: Current status and future outlook. Materials Today, 2019, 26, 40-66.	14.2	89
246	Extracellular Vesicle Isolation and Analysis by Western Blotting. Methods in Molecular Biology, 2017, 1660, 143-152.	0.9	88
247	Filling gaps in a metabolic network using expression information. Bioinformatics, 2004, 20, i178-i185.	4.1	87
248	Identifying metabolic enzymes with multiple types of association evidence. BMC Bioinformatics, 2006, 7, 177.	2.6	87
249	High-fidelity gene synthesis by retrieval of sequence-verified DNA identified using high-throughput pyrosequencing. Nature Biotechnology, 2010, 28, 1291-1294.	17.5	87
250	Multiplexed <i>in Vivo</i> His-Tagging of Enzyme Pathways for <i>in Vitro</i> Single-Pot Multienzyme Catalysis. ACS Synthetic Biology, 2012, 1, 43-52.	3.8	87
251	High-throughput creation and functional profiling of DNA sequence variant libraries using CRISPR–Cas9 in yeast. Nature Biotechnology, 2018, 36, 540-546.	17.5	87
252	PhIP-Seq characterization of autoantibodies from patients with multiple sclerosis, type 1 diabetes and rheumatoid arthritis. Journal of Autoimmunity, 2013, 43, 1-9.	6.5	83

#	Article	IF	CITATIONS
253	A deep learning approach to programmable RNA switches. Nature Communications, 2020, 11, 5057.	12.8	83
254	The Most Conserved Genome Segments for Life Detection on Earth and Other Planets. Origins of Life and Evolution of Biospheres, 2008, 38, 517-533.	1.9	82
255	Improved bacterial recombineering by parallelized protein discovery. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 13689-13698.	7.1	82
256	Proteomeâ€wide systems analysis of a cellulosic biofuelâ€producing microbe. Molecular Systems Biology, 2011, 7, 461.	7.2	81
257	Genome Editing in Human Stem Cells. Methods in Enzymology, 2014, 546, 119-138.	1.0	81
258	Enhancing CRISPR-Cas9 gRNA efficiency prediction by data integration and deep learning. Nature Communications, 2021, 12, 3238.	12.8	81
259	Genome-wide Co-occurrence of Promoter Elements Reveals a cis-Regulatory Cassette of rRNA Transcription Motifs in Saccharomyces cerevisiae. Genome Research, 2002, 12, 1723-1731.	5.5	80
260	An Integrated Strategy for Analyzing the Unique Developmental Programs of Different Myoblast Subtypes. PLoS Genetics, 2006, 2, e16.	3.5	80
261	Neutralizing antibodies against West Nile virus identified directly from human B cells by single-cell analysis and next generation sequencing. Integrative Biology (United Kingdom), 2015, 7, 1587-1597.	1.3	80
262	Improving Lambda Red Genome Engineering in Escherichia coli via Rational Removal of Endogenous Nucleases. PLoS ONE, 2012, 7, e44638.	2.5	77
263	Addressing the ethical issues raised by synthetic human entities with embryo-like features. ELife, 2017, 6, .	6.0	77
264	Targeted gene inactivation in <i>Clostridium phytofermentans</i> shows that cellulose degradation requires the family 9 hydrolase Cphy3367. Molecular Microbiology, 2009, 74, 1300-1313.	2.5	76
265	Genomic Analysis of the Hydrocarbon-Producing, Cellulolytic, Endophytic Fungus Ascocoryne sarcoides. PLoS Genetics, 2012, 8, e1002558.	3.5	76
266	Inter-homologue repair in fertilized human eggs?. Nature, 2018, 560, E5-E7.	27.8	76
267	Gene synthesis by circular assembly amplification. Nature Methods, 2008, 5, 37-39.	19.0	75
268	2020 visions. Nature, 2010, 463, 26-32.	27.8	75
269	Korean Genome Project: 1094 Korean personal genomes with clinical information. Science Advances, 2020, 6, eaaz7835.	10.3	75
270	Discovering functional transcription-factor combinations in the human cell cycle. Genome Research, 2005, 15, 848-855.	5.5	73

#	Article	IF	CITATIONS
271	Adaptive evolution of genomically recoded <i>Escherichia coli</i> . Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 3090-3095.	7.1	73
272	A whole genome approach to in vivo DNA-protein interactions in E. coli. Nature, 1992, 360, 606-610.	27.8	72
273	Chromosomal periodicity of evolutionarily conserved gene pairs. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 10559-10564.	7.1	72
274	Multiplex single-molecule interaction profiling of DNA-barcoded proteins. Nature, 2014, 515, 554-557.	27.8	72
275	Recoding the Genetic Code with Selenocysteine. Angewandte Chemie - International Edition, 2014, 53, 319-323.	13.8	72
276	Public Access to Genome-Wide Data: Five Views on Balancing Research with Privacy and Protection. PLoS Genetics, 2009, 5, e1000665.	3.5	71
277	Overview of DNA Sequencing Strategies. Current Protocols in Molecular Biology, 2011, 96, Unit7.1.	2.9	71
278	The Naked Mole Rat Genome Resource: facilitating analyses of cancer and longevity-related adaptations. Bioinformatics, 2014, 30, 3558-3560.	4.1	71
279	The COVID-19 XPRIZE and the need for scalable, fast, and widespread testing. Nature Biotechnology, 2020, 38, 1021-1024.	17.5	71
280	Improved Cell-Free RNA and Protein Synthesis System. PLoS ONE, 2014, 9, e106232.	2.5	71
281	Expression dynamics of a cellular metabolic network. Molecular Systems Biology, 2005, 1, 2005.0016.	7.2	70
282	Transcriptional Profiling of CD4 T Cells Identifies Distinct Subgroups of HIV-1 Elite Controllers. Journal of Virology, 2011, 85, 3015-3019.	3.4	69
283	Modified bases enable high-efficiency oligonucleotide-mediated allelic replacement via mismatch repair evasion. Nucleic Acids Research, 2011, 39, 7336-7347.	14.5	68
284	CRISPR/Cas9â€Ðirected Genome Editing of Cultured Cells. Current Protocols in Molecular Biology, 2014, 107, 31.1.1-17.	2.9	67
285	Establishing a Cell-Free <i>Vibrio natriegens</i> Expression System. ACS Synthetic Biology, 2018, 7, 2475-2479.	3.8	67
286	Opportunities, Barriers, and a Strategy for Overcoming Translational Challenges to Therapeutic Nucleic Acid Nanotechnology. ACS Nano, 2020, 14, 9221-9227.	14.6	67
287	Core commitments for field trials of gene drive organisms. Science, 2020, 370, 1417-1419.	12.6	67
288	Identification of foreign gene sequences by transcript filtering against the human genome. Nature Genetics, 2002, 30, 141-142.	21.4	65

#	Article	IF	CITATIONS
289	Preferred in vivo ubiquitination sites. Bioinformatics, 2004, 20, 3302-3307.	4.1	65
290	Quantification of microRNA Expression with Nextâ€Generation Sequencing. Current Protocols in Molecular Biology, 2013, 103, Unit 4.17.	2.9	65
291	A functional metagenomic approach for expanding the synthetic biology toolbox for biomass conversion. Molecular Systems Biology, 2010, 6, 360.	7.2	64
292	Engineering allostery. Trends in Genetics, 2014, 30, 521-528.	6.7	64
293	Personal genomes in progress: from the Human Genome Project to the Personal Genome Project. Dialogues in Clinical Neuroscience, 2010, 12, 47-60.	3.7	64
294	Discrimination between Paralogs using Microarray Analysis: Application to the Yap1p and Yap2p Transcriptional Networks. Molecular Biology of the Cell, 2002, 13, 1608-1614.	2.1	63
295	Next stop for the CRISPR revolution: RNAâ€guided epigenetic regulators. FEBS Journal, 2016, 283, 3181-3193.	4.7	63
296	From Annotated Genomes to Metabolic Flux Models and Kinetic Parameter Fitting. OMICS A Journal of Integrative Biology, 2003, 7, 301-316.	2.0	62
297	Multiplex padlock targeted sequencing reveals human hypermutable CpG variations. Genome Research, 2009, 19, 1606-1615.	5.5	62
298	Robust differentiation of human pluripotent stem cells into endothelial cells via temporal modulation of ETV2 with modified mRNA. Science Advances, 2020, 6, eaba7606.	10.3	62
299	Single molecule profiling of tau gene expression in Alzheimer's disease. Journal of Neurochemistry, 2007, 103, 1228-1236.	3.9	60
300	Engineering and optimising deaminase fusions for genome editing. Nature Communications, 2016, 7, 13330.	12.8	60
301	Prediction of similarly acting cis-regulatory modules by subsequence profiling and comparative genomics in Drosophila melanogaster and D.pseudoobscura. Bioinformatics, 2004, 20, 2738-2750.	4.1	59
302	Accurate analysis of genuine CRISPR editing events with ampliCan. Genome Research, 2019, 29, 843-847.	5.5	59
303	Computational comparison of two draft sequences of the human genome. Nature, 2001, 409, 856-859.	27.8	58
304	Evidence for large diversity in the human transcriptome created by Alu RNA editing. Nucleic Acids Research, 2009, 37, 6905-6915.	14.5	58
305	An ethnically relevant consensus Korean reference genome is a step towards personal reference genomes. Nature Communications, 2016, 7, 13637.	12.8	58
306	Raw Personal Data: Providing Access. Science, 2014, 343, 373-374.	12.6	57

18

#	Article	IF	CITATIONS
307	Direct Mutagenesis of Thousands of Genomic Targets Using Microarray-Derived Oligonucleotides. ACS Synthetic Biology, 2015, 4, 17-22.	3.8	57
308	A single combination gene therapy treats multiple age-related diseases. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 23505-23511.	7.1	57
309	Efficient microRNA capture and bar-coding via enzymatic oligonucleotide adenylation. Nature Methods, 2008, 5, 777-779.	19.0	56
310	Life after the synthetic cell. Nature, 2010, 465, 422-424.	27.8	56
311	A Motif Co-Occurrence Approach for Genome-Wide Prediction of Transcription-Factor-Binding Sites in Escherichia coli. Genome Research, 2004, 14, 201-208.	5.5	55
312	A Robust Approach to Identifying Tissue-Specific Gene Expression Regulatory Variants Using Personalized Human Induced Pluripotent Stem Cells. PLoS Genetics, 2009, 5, e1000718.	3.5	55
313	Manipulating replisome dynamics to enhance lambda Red-mediated multiplex genome engineering. Nucleic Acids Research, 2012, 40, e170-e170.	14.5	54
314	Measuring Cation Dependent DNA Polymerase Fidelity Landscapes by Deep Sequencing. PLoS ONE, 2012, 7, e43876.	2.5	54
315	Photon-directed multiplexed enzymatic DNA synthesis for molecular digital data storage. Nature Communications, 2020, 11, 5246.	12.8	53
316	High-throughput functional variant screens via in vivo production of single-stranded DNA. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	53
317	Protein interaction discovery using parallel analysis of translated ORFs (PLATO). Nature Biotechnology, 2013, 31, 331-334.	17.5	52
318	Orthogonally induced differentiation of stem cells for the programmatic patterning of vascularized organoids and bioprinted tissues. Nature Biomedical Engineering, 2022, 6, 449-462.	22.5	52
319	Framework for rapid comparison of extracellular vesicle isolation methods. ELife, 2021, 10, .	6.0	51
320	Model-driven analysis of experimentally determined growth phenotypes for 465 yeast gene deletion mutants under 16 different conditions. Genome Biology, 2008, 9, R140.	9.6	50
321	Technological challenges and milestones for writing genomes. Science, 2019, 366, 310-312.	12.6	50
322	Large scale bacterial gene discovery by similarity search. Nature Genetics, 1994, 7, 205-214.	21.4	49
323	CRISPR-Cas-Mediated Targeted Genome Editing in Human Cells. Methods in Molecular Biology, 2014, 1114, 245-267.	0.9	48
324	Emergent rules for codon choice elucidated by editing rare arginine codons in <i>Escherichia coli</i> . Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E5588-97.	7.1	48

#	Article	IF	CITATIONS
325	Overcoming Challenges in Engineering the Genetic Code. Journal of Molecular Biology, 2016, 428, 1004-1021.	4.2	48
326	Biosensor libraries harness large classes of binding domains for construction of allosteric transcriptional regulators. Nature Communications, 2018, 9, 3101.	12.8	48
327	On the complete determination of biological systems. Trends in Biotechnology, 2003, 21, 251-254.	9.3	47
328	Barcoding cells using cell-surface programmable DNA-binding domains. Nature Methods, 2013, 10, 403-406.	19.0	47
329	Global citizen deliberation on genome editing. Science, 2020, 369, 1435-1437.	12.6	47
330	Recombineering and MAGE. Nature Reviews Methods Primers, 2021, 1, .	21.2	47
331	Design and characterization of a nanopore-coupled polymerase for single-molecule DNA sequencing by synthesis on an electrode array. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E6749-E6756.	7.1	46
332	From systems biology to synthetic biology. Molecular Systems Biology, 2005, 1, 2005.0032.	7.2	45
333	The cleavage site of the restriction endonuclease Ava II. Nucleic Acids Research, 1978, 5, 2313-2319.	14.5	44
334	A Bacterial Strain with a Unique Quadruplet Codon Specifying Nonâ€native Amino Acids. ChemBioChem, 2014, 15, 1782-1786.	2.6	44
335	Characterizing posttranslational modifications in prokaryotic metabolism using a multiscale workflow. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 11096-11101.	7.1	44
336	Overview of DNA Sequencing Strategies. Current Protocols in Molecular Biology, 2008, 81, Unit 7.1.	2.9	43
337	Large-scale DNA editing of retrotransposons accelerates mammalian genome evolution. Nature Communications, 2011, 2, 519.	12.8	43
338	To help aging populations, classify organismal senescence. Science, 2019, 366, 576-578.	12.6	42
339	Compelling Reasons for Repairing Human Germlines. New England Journal of Medicine, 2017, 377, 1909-1911.	27.0	41
340	Enabling large-scale genome editing at repetitive elements by reducing DNA nicking. Nucleic Acids Research, 2020, 48, 5183-5195.	14.5	41
341	A Survey of Genomic Traces Reveals a Common Sequencing Error, RNA Editing, and DNA Editing. PLoS Genetics, 2010, 6, e1000954.	3.5	40
342	Preserved DNA Damage Checkpoint Pathway Protects against Complications in Long-Standing Type 1 Diabetes. Cell Metabolism, 2015, 22, 239-252.	16.2	40

#	Article	IF	CITATIONS
343	Cogenerating Synthetic Parts toward a Self-Replicating System. ACS Synthetic Biology, 2017, 6, 1327-1336.	3.8	40
344	Beyond editing to writing large genomes. Nature Reviews Genetics, 2017, 18, 749-760.	16.3	40
345	Scalable Device for Automated Microbial Electroporation in a Digital Microfluidic Platform. ACS Synthetic Biology, 2017, 6, 1701-1709.	3.8	40
346	[14] DNA sequencing with direct transfer electrophoresis and nonradioactive detection. Methods in Enzymology, 1993, 218, 187-222.	1.0	39
347	CRISPR-C: circularization of genes and chromosome by CRISPR in human cells. Nucleic Acids Research, 2018, 46, e131.	14.5	39
348	Barcoded oligonucleotides ligated on RNA amplified for multiplexed and parallel <i>in situ</i> analyses. Nucleic Acids Research, 2021, 49, e58-e58.	14.5	39
349	Complete mitochondrial genomes of living and extinct pigeons revise the timing of the columbiform radiation. BMC Evolutionary Biology, 2016, 16, 230.	3.2	38
350	Multiplexed Engineering in Biology. Trends in Biotechnology, 2016, 34, 198-206.	9.3	38
351	Algorithms for Identifying Protein Cross-Links via Tandem Mass Spectrometry. Journal of Computational Biology, 2001, 8, 571-583.	1.6	37
352	Mutants of Cre recombinase with improved accuracy. Nature Communications, 2013, 4, 2509.	12.8	37
353	Next-generation carrier screening. Genetics in Medicine, 2014, 16, 132-140.	2.4	37
354	Engineering posttranslational proofreading to discriminate nonstandard amino acids. Proceedings of the United States of America, 2018, 115, 619-624.	7.1	37
355	Targeted intracellular degradation of SARS-CoV-2 via computationally optimized peptide fusions. Communications Biology, 2020, 3, 715.	4.4	37
356	Benchmarking evolutionary tinkering underlying human–viral molecular mimicry shows multiple host pulmonary–arterial peptides mimicked by SARS-CoV-2. Cell Death Discovery, 2020, 6, 96.	4.7	37
357	Multiplex Sequencing of 1.5 Mb of theMycobacterium leprae Genome. Genome Research, 1997, 7, 802-819.	5.5	36
358	Rational optimization of <i>tolC</i> as a powerful dual selectable marker for genome engineering. Nucleic Acids Research, 2014, 42, 4779-4790.	14.5	36
359	Characterizing the portability of phage-encoded homologous recombination proteins. Nature Chemical Biology, 2021, 17, 394-402.	8.0	36
360	Assaying chromosomal inversions by single-molecule haplotyping. Nature Methods, 2006, 3, 439-445.	19.0	35

#	Article	IF	CITATIONS
361	Regulation of host and virus genes by neuronal miR-138 favours herpes simplex virus 1 latency. Nature Microbiology, 2021, 6, 682-696.	13.3	35
362	Analyses of human–chimpanzee orthologous gene pairs to explore evolutionary hypotheses of aging. Mechanisms of Ageing and Development, 2007, 128, 355-364.	4.6	34
363	Redirector: Designing Cell Factories by Reconstructing the Metabolic Objective. PLoS Computational Biology, 2013, 9, e1002882.	3.2	34
364	Bioart. Trends in Biotechnology, 2015, 33, 724-734.	9.3	34
365	Efficient Reassignment of a Frequent Serine Codon in Wild-Type <i>Escherichia coli</i> . ACS Synthetic Biology, 2016, 5, 163-171.	3.8	34
366	Ultrasensitive Measurement of Both SARS-CoV-2 RNA and Antibodies from Saliva. Analytical Chemistry, 2021, 93, 5365-5370.	6.5	34
367	Molecular electronics sensors on a scalable semiconductor chip: A platform for single-molecule measurement of binding kinetics and enzyme activity. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	34
368	Towards practical and robust DNA-based data archiving using the yin–yang codec system. Nature Computational Science, 2022, 2, 234-242.	8.0	33
369	Let us go forth and safely multiply. Nature, 2005, 438, 423-423.	27.8	32
370	Highâ€Throughput Multiplex Sequencing of miRNA. Current Protocols in Human Genetics, 2012, 73, Unit 11.12.1-10.	3.5	32
371	Integrating B Cell Lineage Information into Statistical Tests for Detecting Selection in Ig Sequences. Journal of Immunology, 2014, 192, 867-874.	0.8	32
372	The whale shark genome reveals how genomic and physiological properties scale with body size. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 20662-20671.	7.1	32
373	Regulatory Networks Revealed by Transcriptional Profiling of Damaged Saccharomyces cerevisiae Cells: Rpn4 Links Base Excision Repair with Proteasomes. Molecular and Cellular Biology, 2000, 20, 8157-8167.	2.3	32
374	CRISPR/Cas9-Mediated Phage Resistance Is Not Impeded by the DNA Modifications of Phage T4. PLoS ONE, 2014, 9, e98811.	2.5	31
375	Performance of optimized noncanonical amino acid mutagenesis systems in the absence of release factor 1. Molecular BioSystems, 2016, 12, 1746-1749.	2.9	31
376	Collection and Motif-Based Prediction of Phosphorylation Sites in Human Viruses. Science Signaling, 2010, 3, rs2.	3.6	30
377	The Future of Multiplexed Eukaryotic Genome Engineering. ACS Chemical Biology, 2018, 13, 313-325.	3.4	30
378	A network of transcriptionally coordinated functional modules in Saccharomyces cerevisiae. Genome Research, 2005, 15, 1298-1306.	5.5	29

#	Article	IF	CITATIONS
379	The New Century of the Brain. Scientific American, 2014, 310, 38-45.	1.0	29
380	A systematic comparison of error correction enzymes by next-generation sequencing. Nucleic Acids Research, 2017, 45, 9206-9217.	14.5	29
381	Data privacy in the age of personal genomics. Nature Biotechnology, 2019, 37, 1115-1117.	17.5	29
382	Stable Gene Targeting in Human Cells Using Single-Strand Oligonucleotides with Modified Bases. PLoS ONE, 2012, 7, e36697.	2.5	28
383	Genome and Transcriptome of Clostridium phytofermentans, Catalyst for the Direct Conversion of Plant Feedstocks to Fuels. PLoS ONE, 2015, 10, e0118285.	2.5	28
384	Precise Cas9 targeting enables genomic mutation prevention. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 3669-3673.	7.1	28
385	Building Capacity for a Global Genome Editing Observatory: Conceptual Challenges. Trends in Biotechnology, 2018, 36, 639-641.	9.3	28
386	Predicting ligand-binding function in families of bacterial receptors. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 3965-3970.	7.1	27
387	Predicting phenotype from patterns of annotation. Bioinformatics, 2003, 19, i183-i189.	4.1	27
388	Multiple haplotype-resolved genomes reveal population patterns of gene and protein diplotypes. Nature Communications, 2014, 5, 5569.	12.8	27
389	From Designing the Molecules of Life to Designing Life: Future Applications Derived from Advances in DNA Technologies. Angewandte Chemie - International Edition, 2018, 57, 4313-4328.	13.8	27
390	A weight matrix for binding recognition by the redox-response regulator ArcA-P of Escherichia coli. Molecular Microbiology, 1999, 32, 219-221.	2.5	26
391	Using Bacteria to Determine Protein Kinase Specificity and Predict Target Substrates. PLoS ONE, 2012, 7, e52747.	2.5	26
392	Statistical Analysis of Molecular Signal Recording. PLoS Computational Biology, 2013, 9, e1003145.	3.2	26
393	Improving microbial fitness in the mammalian gut by in vivo temporal functional metagenomics. Molecular Systems Biology, 2015, 11, 788.	7.2	26
394	Heterologous erythromycin production across strain and plasmid construction. Biotechnology Progress, 2018, 34, 271-276.	2.6	26
395	Circumventing cellular immunity by miR142-mediated regulation sufficiently supports rAAV-delivered OVA expression without activating humoral immunity. JCI Insight, 2019, 4, .	5.0	26
396	Molecular weight assessment of proteins in total proteome profiles using 1D-PAGE and LC/MS/MS. Proteome Science, 2005, 3, 6.	1.7	25

#	Article	IF	CITATIONS
397	Response to "Unexpected mutations after CRISPR–Cas9 editing in vivo― Nature Methods, 2018, 15, 236-237.	19.0	25
398	Crystal structure of the RedÎ ² C-terminal domain in complex with λ Exonuclease reveals an unexpected homology with λ Orf and an interaction with <i>Escherichia coli</i> single stranded DNA binding protein. Nucleic Acids Research, 2019, 47, 1950-1963.	14.5	25
399	<scp>PERV</scp> inactivation is necessary to guarantee absence of pigâ€toâ€patient <scp>PERV</scp> s transmission in xenotransplantation. Xenotransplantation, 2017, 24, e12366.	2.8	25
400	A Statistical Model for Investigating Binding Probabilities of DNA Nucleotide Sequences Using Microarrays. Biometrics, 2002, 58, 981-988.	1.4	24
401	An open-source oligomicroarray standard for human and mouse. Nature Biotechnology, 2002, 20, 1082-1083.	17.5	24
402	Dissecting limiting factors of the Protein synthesis Using Recombinant Elements (PURE) system. Translation, 2017, 5, e1327006.	2.9	24
403	Porcine genome engineering for xenotransplantation. Advanced Drug Delivery Reviews, 2021, 168, 229-245.	13.7	24
404	The Role of Synthetic Biology in Atmospheric Greenhouse Gas Reduction: Prospects and Challenges. Biodesign Research, 2020, 2020, .	1.9	24
405	Natural reassignment of CUU and CUA sense codons to alanine in Ashbya mitochondria. Nucleic Acids Research, 2014, 42, 499-508.	14.5	23
406	Optimizing complex phenotypes through model-guided multiplex genome engineering. Genome Biology, 2017, 18, 100.	8.8	23
407	Building Capacity for a Clobal Genome Editing Observatory: Institutional Design. Trends in Biotechnology, 2018, 36, 741-743.	9.3	23
408	Digital quantitative measurements of gene expression. Biotechnology and Bioengineering, 2004, 86, 117-124.	3.3	22
409	A BioBrick compatible strategy for genetic modification of plants. Journal of Biological Engineering, 2012, 6, 8.	4.7	22
410	Review of Scientific Self-Experimentation: Ethics History, Regulation, Scenarios, and Views Among Ethics Committees and Prominent Scientists. Rejuvenation Research, 2019, 22, 31-42.	1.8	22
411	Rapid in vitro production of single-stranded DNA. Nucleic Acids Research, 2019, 47, 11956-11962.	14.5	22
412	A haplotype-aware <i>de novo</i> assembly of related individuals using pedigree sequence graph. Bioinformatics, 2020, 36, 2385-2392.	4.1	22
413	A computer-guided design tool to increase the efficiency of cellular conversions. Nature Communications, 2021, 12, 1659.	12.8	22
414	Discovery and validation of human genomic safe harbor sites for gene and cell therapies. Cell Reports Methods, 2022, 2, 100154.	2.9	22

#	Article	IF	CITATIONS
415	Fungal lysis by a soil bacterium fermenting cellulose. Environmental Microbiology, 2015, 17, 2618-2627.	3.8	21
416	The whole genome sequences and experimentally phased haplotypes of over 100 personal genomes. GigaScience, 2016, 5, 42.	6.4	21
417	CRISPRâ€Mediated Gene Targeting of Human Induced Pluripotent Stem Cells. Current Protocols in Stem Cell Biology, 2015, 35, 5A.8.1-5A.8.22.	3.0	21
418	Does mapping reveal correlation between gene expression and protein–protein interaction?. Nature Genetics, 2003, 33, 15-16.	21.4	20
419	Quantitative monitoring by polymerase colony assay of known mutations resistant to ABL kinase inhibitors. Oncogene, 2008, 27, 775-782.	5.9	20
420	Cushing's syndrome mutant <scp>PKA^L</scp> ^{205R} exhibits altered substrate specificity. FEBS Letters, 2017, 591, 459-467.	2.8	20
421	Cell therapy strategies for COVID-19: Current approaches and potential applications. Science Advances, 2021, 7, .	10.3	20
422	Gene Assembly from Chipâ€ S ynthesized Oligonucleotides. Current Protocols in Chemical Biology, 2012, 4, 1-17.	1.7	19
423	Imaging of Isolated Extracellular Vesicles Using Fluorescence Microscopy. Methods in Molecular Biology, 2017, 1660, 233-241.	0.9	19
424	Challenges and recommendations for epigenomics in precision health. Nature Biotechnology, 2017, 35, 1128-1132.	17.5	19
425	High-resolution mapping of DNA polymerase fidelity using nucleotide imbalances and next-generation sequencing. Nucleic Acids Research, 2018, 46, e78-e78.	14.5	19
426	On the design of clone-based haplotyping. Genome Biology, 2013, 14, R100.	9.6	18
427	New intranasal and injectable gene therapy for healthy life extension. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2121499119.	7.1	18
428	Parallel competition analysis of Saccharomyces cerevisiae strains differing by a single base using polymerase colonies. Nucleic Acids Research, 2003, 31, 84e-84.	14.5	17
429	Identification of a Novel Set of Genes Regulated by a Unique Liver X Receptor-α-mediated Transcription Mechanism. Journal of Biological Chemistry, 2003, 278, 15252-15260.	3.4	17
430	Hippocrates revisited? Old ideals and new realities. Genomic Medicine, 2008, 2, 1-3.	0.3	17
431	Towards in situ sequencing for life detection. , 2017, , .		17
432	Spontaneous CRISPR loci generation in vivo by non-canonical spacer integration. Nature Microbiology, 2018, 3, 310-318.	13.3	17

#	Article	IF	CITATIONS
433	Release Factor Inhibiting Antimicrobial Peptides Improve Nonstandard Amino Acid Incorporation in Wild-type Bacterial Cells. ACS Chemical Biology, 2020, 15, 1852-1861.	3.4	17
434	Porcine germline genome engineering. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	17
435	How accurate can genetic predictions be?. BMC Genomics, 2012, 13, 340.	2.8	16
436	Characterization of porcine endogenous retrovirus particles released by the CRISPR/Cas9 inactivated cell line <i>PK15 clone 15</i> . Xenotransplantation, 2020, 27, e12563.	2.8	16
437	A National Network of Neurotechnology Centers for the BRAIN Initiative. Neuron, 2015, 88, 445-448.	8.1	15
438	Cell-free Protein Expression Using the Rapidly Growing Bacterium Vibrio natriegens . Journal of Visualized Experiments, 2019, , .	0.3	15
439	Reactions to the National Academies/Royal Society Report on <i>Heritable Human Genome Editing</i> . CRISPR Journal, 2020, 3, 332-349.	2.9	15
440	Lineage barcoding in mice with homing CRISPR. Nature Protocols, 2021, 16, 2088-2108.	12.0	15
441	Recent Progress in Engineering Human-Associated Microbiomes. Methods in Molecular Biology, 2014, 1151, 3-25.	0.9	15
442	Mathematical models of diffusion-constrained polymerase chain reactions: basis of high-throughput nucleic acid assays and simple self-organizing systems. Journal of Theoretical Biology, 2004, 228, 31-46.	1.7	14
443	Perspective: Encourage the innovators. Nature, 2015, 528, S7-S7.	27.8	14
444	Simulating Serial-Target Antibacterial Drug Synergies Using Flux Balance Analysis. PLoS ONE, 2016, 11, e0147651.	2.5	14
445	Matching phenotypes to whole genomes: Lessons learned from four iterations of the personal genome project community challenges. Human Mutation, 2017, 38, 1266-1276.	2.5	14
446	A machine learning toolkit for genetic engineering attribution to facilitate biosecurity. Nature Communications, 2020, 11, 6293.	12.8	14
447	Targeted intracellular delivery of Cas13 and Cas9 nucleases using bacterial toxin-based platforms. Cell Reports, 2022, 38, 110476.	6.4	14
448	Polony DNA Sequencing. Current Protocols in Molecular Biology, 2006, 76, Unit 7.8.	2.9	13
449	TBDB: a database of structurally annotated T-box riboswitch:tRNA pairs. Nucleic Acids Research, 2021, 49, D229-D235.	14.5	13
450	Synthetic auxotrophy remains stable after continuous evolution and in coculture with mammalian cells. Science Advances, 2021, 7, .	10.3	13

#	Article	IF	CITATIONS
451	Characterization of Cas9–Guide RNA Orthologs. Cold Spring Harbor Protocols, 2016, 2016, pdb.top086793.	0.3	12
452	Advancing the search for extra-terrestrial genomes. , 2016, , .		12
453	αKLOTHO and sTGFβR2 treatment counteract the osteoarthritic phenotype developed in a rat model. Protein and Cell, 2020, 11, 219-226.	11.0	12
454	Deep representation learning improves prediction of Lacl-mediated transcriptional repression. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	12
455	Recording Temporal Signals with Minutes Resolution Using Enzymatic DNA Synthesis. Journal of the American Chemical Society, 2021, 143, 16630-16640.	13.7	12
456	Complete Genome Sequences of T4-Like Bacteriophages RB3, RB5, RB6, RB7, RB9, RB10, RB27, RB33, RB55, RB59, and RB68. Genome Announcements, 2015, 3, .	0.8	11
457	Characterizing Protein Kinase Substrate Specificity Using the Proteomic Peptide Library (ProPeL) Approach. Current Protocols in Chemical Biology, 2018, 10, e38.	1.7	11
458	Anomalous COVID-19 tests hinder researchers. Science, 2021, 371, 244-245.	12.6	11
459	Designing efficient genetic code expansion in Bacillus subtilis to gain biological insights. Nature Communications, 2021, 12, 5429.	12.8	11
460	An integrated pipeline for mammalian genetic screening. Cell Reports Methods, 2021, 1, 100082.	2.9	11
461	Expanding homogeneous culture of human primordial germ cell-like cells maintaining germline features without serum or feeder layers. Stem Cell Reports, 2022, 17, 507-521.	4.8	11
462	Orgo-Seq integrates single-cell and bulk transcriptomic data to identify cell type specific-driver genes associated with autism spectrum disorder. Nature Communications, 2022, 13, .	12.8	11
463	Panel Discussion: Can There Be a Biomarker for Sleepiness?. Journal of Clinical Sleep Medicine, 2011, 7, S45-8.	2.6	10
464	New class of biological detectors for WIMPs. International Journal of Modern Physics A, 2014, 29, 1443007.	1.5	10
465	Enabling multiplexed testing of pooled donor cells through whole-genome sequencing. Genome Medicine, 2018, 10, 31.	8.2	10
466	Evolthon: A community endeavor to evolve lab evolution. PLoS Biology, 2019, 17, e3000182.	5.6	10
467	Citizen-centered, auditable and privacy-preserving population genomics. Nature Computational Science, 2021, 1, 192-198.	8.0	10
468	Laboratory-Generated DNA Can Cause Anomalous Pathogen Diagnostic Test Results. Microbiology Spectrum, 2021, 9, e0031321.	3.0	10

#	Article	IF	CITATIONS
469	Multiplex Single-Molecule Kinetics of Nanopore-Coupled Polymerases. ACS Nano, 2021, 15, 489-502.	14.6	10
470	Please Reanimate. Scientific American, 2013, 309, 12-12.	1.0	9
471	Simultaneous Discovery of Cell-Free DNA and the Nucleosome Ladder. Genetics, 2018, 209, 27-29.	2.9	9
472	Puzzle Imaging: Using Large-Scale Dimensionality Reduction Algorithms for Localization. PLoS ONE, 2015, 10, e0131593.	2.5	8
473	Challenges and opportunities of machine-guided capsid engineering for gene therapy. Cell & Gene Therapy Insights, 2019, 5, 523-536.	0.1	8
474	Reply to "Does mapping reveal correlation between gene expression and protein–protein interaction?". Nature Genetics, 2003, 33, 16-17.	21.4	7
475	Spatial information in large-scale neural recordings. Frontiers in Computational Neuroscience, 2014, 8, 172.	2.1	7
476	Accurate Whole Genome Sequencing as the Ultimate Genetic Test. Clinical Chemistry, 2015, 61, 305-306.	3.2	7
477	CRISPR-Cas9 System: Opportunities and Concerns. Clinical Chemistry, 2016, 62, 1304-1311.	3.2	7
478	Synthetic genomes with altered genetic codes. Current Opinion in Systems Biology, 2020, 24, 32-40.	2.6	7
479	Spatial Sequencing: A Perspective. Journal of Biomolecular Techniques, 2020, 31, jbt.20-3102-003.	1.5	7
480	Cytosine specific DNA sequencing with hydrogen peroxide. Nucleic Acids Research, 1995, 23, 4922-4923.	14.5	6
481	yMGV: a cross-species expression data mining tool. Nucleic Acids Research, 2004, 32, 323D-325.	14.5	6
482	Sequencing thoroughbreds. Nature Biotechnology, 2006, 24, 139-139.	17.5	6
483	An unbiased index to quantify participant's phenotypic contribution to an open-access cohort. Scientific Reports, 2017, 7, 46148.	3.3	6
484	CRISPR Guide RNA Cloning for Mammalian Systems. Journal of Visualized Experiments, 2018, , .	0.3	6
485	The Advent of Human Life Data Economics. Trends in Molecular Medicine, 2019, 25, 566-570.	6.7	6

486 Applications of Engineered Synthetic Ecosystems. , 2013, , 317-325.

5

#	Article	IF	CITATIONS
487	An analysis and validation pipeline for large-scale RNAi-based screens. Scientific Reports, 2013, 3, 1076.	3.3	5
488	Molecular Threading: Mechanical Extraction, Stretching and Placement of DNA Molecules from a Liquid-Air Interface. PLoS ONE, 2013, 8, e69058.	2.5	5
489	Precision Chemistry for Precision Medicine. ACS Central Science, 2015, 1, 11-13.	11.3	5
490	Millstone: software for multiplex microbial genome analysis and engineering. Genome Biology, 2017, 18, 101.	8.8	5
491	Vom Design der Moleküle des Lebens zum Design von Leben: Zukünftige Anwendungen von DNAâ€Technologien. Angewandte Chemie, 2018, 130, 4395-4411.	2.0	5
492	Significant abundance ofcisconfigurations of coding variants in diploid human genomes. Nucleic Acids Research, 2019, 47, 2981-2995.	14.5	5
493	Measurement of large serine integrase enzymatic characteristics in HEK293 cells reveals variability and influence on downstream reporter expression. FEBS Journal, 2021, 288, 6410-6427.	4.7	5
494	Neuronal Cell-type Engineering by Transcriptional Activation. Frontiers in Genome Editing, 2021, 3, 715697.	5.2	5
495	<i>Response</i> : The Dispersion of Neuronal Clones Across the Cerebral Cortex. Science, 1992, 258, 317-320.	12.6	5
496	Databases for gene expression. Nature Biotechnology, 1996, 14, 828-828.	17.5	4
497	MegaGate: A toxin-less gateway molecular cloning tool. STAR Protocols, 2021, 2, 100907.	1.2	4
498	Genomics is mired in misunderstanding. Nature, 2013, 502, 143-143.	27.8	4
499	Characterizing Cas9 Protospacer-Adjacent Motifs with High-Throughput Sequencing of Library Depletion Experiments. Cold Spring Harbor Protocols, 2016, 2016, pdb.prot090183.	0.3	3
500	Single-Cell CRISPR-Based Lineage Tracing in Mice. Biochemistry, 2019, 58, 4775-4776.	2.5	3
501	Algorithms for the selection of fluorescent reporters. Communications Biology, 2021, 4, 118.	4.4	3
502	BRAIN: innovative neurotechnologies for imaging and therapeutics. Dialogues in Clinical Neuroscience, 2013, 15, 241-243.	3.7	3
503	Free Factories: Unified Infrastructure for Data Intensive Web Services. , 2008, 2008, 391-404.		3
504	Back to the future: From genome to metabolome. Human Mutation, 2012, 33, 809-812.	2.5	2

0

#	Article	IF	CITATIONS
505	Raw Data: Access to Inaccuracy—Response. Science, 2014, 343, 969-969.	12.6	2
506	Detection of Insertion/Deletion (Indel) Events after Genome Targeting: Pros and Cons of the Available Methods. , 0, , 181-194.		2
507	Rosetta Brain. , 2015, , 50-64.		2
508	Introduction and Historical Overview of DNA Sequencing. Current Protocols in Molecular Biology, 2011, 96, 7.0.1.	2.9	1
509	Generation and Utilization of CRISPR/Cas9 Screening Libraries in Mammalian Cells. , 0, , 223-234.		1
510	A Call for a Three-Tiered Pandemic Public Health Strategy in Context of SARS-CoV-2. Rejuvenation Research, 2020, 23, 281-283.	1.8	1
511	Voices of biotech leaders. Nature Biotechnology, 2021, 39, 654-660.	17.5	1
512	Monitoring Imatinib Resistance with a "Polony―Assay: Towards Tailored Therapy of Chronic Myelogenous Leukemia (CML) Blood, 2006, 108, 837-837.	1.4	1
513	Transparency is key to ethical vaccine research. Science, 2020, 370, 1422-1423.	12.6	1
514	Results of a 5-Year N-of-1 Growth Hormone Releasing Hormone Gene Therapy Experiment. Rejuvenation Research, 2021, 24, 424-433.	1.8	1
515	Characterization of ColE1 Production for Robust <i>tolC</i> Plate Dual-Selection in <i>E.Âcoli</i> . ACS Synthetic Biology, 2022, 11, 2009-2014.	3.8	1
516	Retrospective Estimation of Exposures to Confirmed or Suspected Carcinogens in an Electrical Utility. Journal of Occupational and Environmental Hygiene, 1995, 10, 856-871.	0.4	0
517	New Technologies for Integrating Genomic, Environmental and Trait Data. Journal of Clinical Sleep Medicine, 2011, 7, S43-4.	2.6	0
518	Thoughts on the Manchester Manifesto. Prometheus, 2011, 29, 343-344.	0.4	0
519	Reading and writing omes. Molecular Systems Biology, 2013, 9, 642.	7.2	0
520	Editing the Human Genome: Progress and Controversies. , 2017, 1, 4-11.	0.8	0
521	Single-Molecule Characterization of a Nanopore-Coupled Cas9 Protein on an Electrode Array. , 2018, , .		0

522 Targeted Genome Editing Techniques in C. elegans and Other Nematode Species. , 0, , 3-21.

#	Article	IF	CITATIONS
523	<i>In Vivo</i> Studies of miRNA Target Interactions Using Site-specific Genome Engineering. , 0, , 37-51.		О
524	Genome Editing with Desired Mutations (Knockin) with CRISPR in Model Organisms. , 0, , 97-109.		0
525	Genetically Engineered Pig Models for Human Diseases using ZFNs, TALENs and CRISPR/Cas9. , 0, , 110-131.		Ο
526	Gene Editing to Create Agricultural and Biomedical Swine Models. , 0, , 132-149.		0
527	Generation of New Model Cell Lines using ssODN Knockin Donors and FACS-based Genome Editing. , 0, , 150-162.		Ο
528	CRISPR Genome Editing in Mice. , 0, , 165-180.		0
529	Genome Engineering Using Sleeping Beauty Transposition in Vertebrates. , 0, , 249-269.		Ο
530	Application of CRISPR for Pooled, Vector-based Functional Genomic Screening in Mammalian Cell Lines. , 0, , 209-222.		0
531	Targeted Genome Editing Using Nuclease-assisted Vector Integration. , 0, , 237-248.		Ο
532	Inducible CRISPR-based Genome Editing for the Characterization of Cancer Genes. , 0, , 337-357.		0
533	Use of the CRISPR/Cas9 System for Genome Editing of Immune System Cells, Defense Against HIV-1 and Cancer Therapies. , 0, , 401-413.		Ο
534	Regulating Human Genome Editing: Negotiating Ethical Concerns Through Science and Policy. , 0, , 454-463.		0
535	ABLC Forum: Aspirations for a Fragile Planet. Industrial Biotechnology, 2021, 17, 170-176.	0.8	0
536	Delivery of biomacromolecules for therapeutic genome editing. Advanced Drug Delivery Reviews, 2021, 168, 1-2.	13.7	0
537	ProPeL: A method to discover specific kinase motifs and predict target substrates. FASEB Journal, 2013, 27, 597.4.	0.5	Ο
538	An interactive and probabilistic strategy for visualizing linear biological sequence motifs. FASEB Journal, 2013, 27, 810.8.	0.5	0
539	Using ProPeL to discover the binding specificity of human DYRK1a. FASEB Journal, 2013, 27, 1045.3.	0.5	0
540	YEAST MITOCHONDRIAL INTRON PRODUCTS REQUIRED INTRONS FOR RNA SPLICING. , 1980, , 379-396.		0

#	Article	IF	CITATIONS
541	Response : The Dispersion of Neuronal Clones Across the Cerebral Cortex. Science, 1992, 258, 317-320.	12.6	0
542	Nucleotide-time alignment for molecular recorders. PLoS Computational Biology, 2017, 13, e1005483.	3.2	0
543	Décrypter le cerveau. , 2017, Nº 93, 14-21.		0
544	Thirty-Eight Special: George Church Pushes the Biotech Envelope. , 2022, 1, 127-132.		0