
Aaron P Russell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5900600/publications.pdf Version: 2024-02-01

AADON D RUSSELL

#	Article	IF	CITATIONS
1	miR-23a suppression accelerates functional decline in the rNLS8 mouse model of TDP-43 proteinopathy. Neurobiology of Disease, 2022, 162, 105559.	4.4	2
2	Muscle Adaptations to Heavy-Load and Blood Flow Restriction Resistance Training Methods. Frontiers in Physiology, 2022, 13, 837697.	2.8	10
3	Hormonal and metabolic responses of older adults to resistance training in normobaric hypoxia. European Journal of Applied Physiology, 2022, 122, 1007.	2.5	3
4	Striated muscle activator of Rho signalling (STARS) overexpression in the mdx mouse enhances muscle functional capacity and regulates the actin cytoskeleton and oxidative phosphorylation pathways. Experimental Physiology, 2021, 106, 1597-1611.	2.0	0
5	An obesogenic maternal environment impairs mouse growth patterns, satellite cell activation, and markers of postnatal myogenesis. American Journal of Physiology - Endocrinology and Metabolism, 2020, 319, E1008-E1018.	3.5	5
6	Overexpression of NDRG2 in skeletal muscle does not ameliorate the effects of stress <i>in vivo</i> . Experimental Physiology, 2020, 105, 1326-1338.	2.0	0
7	MicroRNA-99b-5p downregulates protein synthesis in human primary myotubes. American Journal of Physiology - Cell Physiology, 2020, 319, C432-C440.	4.6	11
8	The Effect of Normobaric Hypoxia on Resistance Training Adaptations in Older Adults. Journal of Strength and Conditioning Research, 2020, Publish Ahead of Print, .	2.1	8
9	The Role of Exercise as a Non-pharmacological Therapeutic Approach for Amyotrophic Lateral Sclerosis: Beneficial or Detrimental?. Frontiers in Neurology, 2019, 10, 783.	2.4	48
10	Dietary Patterns in New Zealand Women: Evaluating Differences in Body Composition and Metabolic Biomarkers. Nutrients, 2019, 11, 1643.	4.1	13
11	MicroRNA suppression of stress-responsive NDRG2 during dexamethasone treatment in skeletal muscle cells. BMC Molecular and Cell Biology, 2019, 20, 12.	2.0	3
12	Perm1 regulates CaMKII activation and shapes skeletal muscle responses to endurance exercise training. Molecular Metabolism, 2019, 23, 88-97.	6.5	19
13	Non-invasive Assessment of Dorsiflexor Muscle Function in Mice. Journal of Visualized Experiments, 2019, , .	0.3	6
14	Lower body blood flow restriction training may induce remote muscle strength adaptations in an active unrestricted arm. European Journal of Applied Physiology, 2018, 118, 617-627.	2.5	34
15	Diet quality and telomere length in older Australian men and women. European Journal of Nutrition, 2018, 57, 363-372.	3.9	34
16	Dysregulation of microRNA biogenesis machinery and microRNA/RNA ratio in skeletal muscle of amyotrophic lateral sclerosis mice. Muscle and Nerve, 2018, 57, 838-847.	2.2	9
17	Sustained cardiac programming by shortâ€ŧerm juvenile exercise training in male rats. Journal of Physiology, 2018, 596, 163-180.	2.9	20
18	PGC-1α and PGC-1β Increase Protein Synthesis via ERRα in C2C12 Myotubes. Frontiers in Physiology, 2018, 9, 1336.	2.8	21

#	Article	IF	CITATIONS
19	Recent advances in understanding the role of FOXO3. F1000Research, 2018, 7, 1372.	1.6	65
20	Increased mitophagy in the skeletal muscle of spinal and bulbar muscular atrophy patients. Human Molecular Genetics, 2017, 26, ddx019.	2.9	37
21	MicroRNA expression patterns in post-natal mouse skeletal muscle development. BMC Genomics, 2017, 18, 52.	2.8	21
22	Striated muscle activator of Rho signalling (STARS) is reduced in ageing human skeletal muscle and targeted by miRâ€628â€5p. Acta Physiologica, 2017, 220, 263-274.	3.8	16
23	Granulocyte Colony-Stimulating Factor and Its Potential Application for Skeletal Muscle Repair and Regeneration. Mediators of Inflammation, 2017, 2017, 1-9.	3.0	23
24	The Role and Regulation of PGC-1Î $^{\pm}$ and PGC-1Î 2 in Skeletal Muscle Adaptation. , 2017, , 179-194.		2
25	Measures to Predict The Individual Variability of Corticospinal Responses Following Transcranial Direct Current Stimulation. Frontiers in Human Neuroscience, 2016, 10, 487.	2.0	21
26	Overexpression of Striated Muscle Activator of Rho Signaling (STARS) Increases C2C12 Skeletal Muscle Cell Differentiation. Frontiers in Physiology, 2016, 7, 7.	2.8	20
27	Ibuprofen Ingestion Does Not Affect Markers of Post-exercise Muscle Inflammation. Frontiers in Physiology, 2016, 7, 86.	2.8	15
28	Erythropoietin Does Not Enhance Skeletal Muscle Protein Synthesis Following Exercise in Young and Older Adults. Frontiers in Physiology, 2016, 7, 292.	2.8	8
29	Skeletal Muscle Satellite Cells, Mitochondria, and MicroRNAs: Their Involvement in the Pathogenesis of ALS. Frontiers in Physiology, 2016, 7, 403.	2.8	47
30	Concurrent exercise incorporating high-intensity interval or continuous training modulates mTORC1 signaling and microRNA expression in human skeletal muscle. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2016, 310, R1297-R1311.	1.8	58
31	Ascorbic acid supplementation improves skeletal muscle oxidative stress and insulin sensitivity in people with type 2 diabetes: Findings of a randomized controlled study. Free Radical Biology and Medicine, 2016, 93, 227-238.	2.9	66
32	Perm1 enhances mitochondrial biogenesis, oxidative capacity, and fatigue resistance in adult skeletal muscle. FASEB Journal, 2016, 30, 674-687.	0.5	46
33	Comparative analysis of microRNA expression in mouse and human brown adipose tissue. BMC Genomics, 2015, 16, 820.	2.8	29
34	NDRG2 promotes myoblast proliferation and caspase 3/7 activities during differentiation, and attenuates hydrogen peroxide – But not palmitateâ€induced toxicity. FEBS Open Bio, 2015, 5, 668-681.	2.3	14
35	Evaluation of follistatin as a therapeutic in models of skeletal muscle atrophy associated with denervation and tenotomy. Scientific Reports, 2015, 5, 17535.	3.3	29
36	Statin-Induced Increases in Atrophy Gene Expression Occur Independently of Changes in PGC1α Protein and Mitochondrial Content. PLoS ONE, 2015, 10, e0128398.	2.5	24

#	Article	IF	CITATIONS
37	G-CSF treatment can attenuate dexamethasone-induced reduction in C2C12 myotube protein synthesis. Cytokine, 2015, 73, 1-7.	3.2	3
38	Effects of systemic hypoxia on human muscular adaptations to resistance exercise training. Physiological Reports, 2015, 3, e12267.	1.7	12
39	Regulation of Granulocyte Colony-Stimulating Factor and Its Receptor in Skeletal Muscle Is Dependent Upon the Type of Inflammatory Stimulus. Journal of Interferon and Cytokine Research, 2015, 35, 710-719.	1.2	13
40	Hormonal and metabolic responses to repeated cycling sprints under different hypoxic conditions. Growth Hormone and IGF Research, 2015, 25, 121-126.	1.1	28
41	Predictors and risks of body fat profiles in young New Zealand European, MÄori and Pacific women: study protocol for the women's EXPLORE study. SpringerPlus, 2015, 4, 128.	1.2	12
42	The CDP-Ethanolamine Pathway Regulates Skeletal Muscle Diacylglycerol Content and Mitochondrial Biogenesis without Altering Insulin Sensitivity. Cell Metabolism, 2015, 21, 718-730.	16.2	83
43	Vitamin C and E supplementation prevents some of the cellular adaptations to endurance-training in humans. Free Radical Biology and Medicine, 2015, 89, 852-862.	2.9	122
44	Exercise, Skeletal Muscle and Circulating microRNAs. Progress in Molecular Biology and Translational Science, 2015, 135, 471-496.	1.7	38
45	Glucocorticoids enhance muscle endurance and ameliorate Duchenne muscular dystrophy through a defined metabolic program. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E6780-9.	7.1	71
46	Effects of tail suspension on serum testosterone and molecular targets regulating muscle mass. Muscle and Nerve, 2015, 52, 278-288.	2.2	6
47	Regulation of ubiquitin proteasome pathway molecular markers in response to endurance and resistance exercise and training. Pflugers Archiv European Journal of Physiology, 2015, 467, 1523-1537.	2.8	50
48	MicroRNA-23a has minimal effect on endurance exercise-induced adaptation of mouse skeletal muscle. Pflugers Archiv European Journal of Physiology, 2015, 467, 389-398.	2.8	18
49	Muscle Metabolism, Nutrition, and Functional Status in Older Adults. , 2015, , 113-124.		0
50	Cellular Localization and Associations of the Major Lipolytic Proteins in Human Skeletal Muscle at Rest and during Exercise. PLoS ONE, 2014, 9, e103062.	2.5	17
51	Identification of MicroRNAs Linked to Regulators of Muscle Protein Synthesis and Regeneration in Young and Old Skeletal Muscle. PLoS ONE, 2014, 9, e114009.	2.5	74
52	Creatine transporter (SLC6A8) knockout mice display an increased capacity for in vitro creatine biosynthesis in skeletal muscle. Frontiers in Physiology, 2014, 5, 314.	2.8	28
53	Ageing has no effect on the regulation of the ubiquitin proteasome-related genes and proteins following resistance exercise. Frontiers in Physiology, 2014, 5, 30.	2.8	23
54	G-CSF does not influence C2C12 myogenesis despite receptor expression in healthy and dystrophic skeletal muscle. Frontiers in Physiology, 2014, 5, 170.	2.8	15

#	Article	IF	CITATIONS
55	lbuprofen supplementation and its effects on NF- <i>ΰ</i> B activation in skeletal muscle following resistance exercise. Physiological Reports, 2014, 2, e12172.	1.7	11
56	EPO-receptor is present in mouse C2C12 and human primary skeletal muscle cells but EPO does not influence myogenesis. Physiological Reports, 2014, 2, e00256.	1.7	13
57	Alterations in Notch signalling in skeletal muscles from <i>mdx</i> and <i>dko</i> dystrophic mice and patients with Duchenne muscular dystrophy. Experimental Physiology, 2014, 99, 675-687.	2.0	25
58	Effects of systemic hypoxia on human muscular adaptations to resistance exercise training. Physiological Reports, 2014, 2, e12033.	1.7	85
59	Delving into disability in Crohn's disease: Dysregulation of molecular pathways may explain skeletal muscle loss in Crohn's disease. Journal of Crohn's and Colitis, 2014, 8, 626-634.	1.3	59
60	Androgenic and estrogenic regulation of Atrogin-1, MuRF1 and myostatin expression in different muscle types of male mice. European Journal of Applied Physiology, 2014, 114, 751-761.	2.5	17
61	The STARS signaling pathway: a key regulator of skeletal muscle function. Pflugers Archiv European Journal of Physiology, 2014, 466, 1659-1671.	2.8	23
62	Skeletal muscle mitochondria: A major player in exercise, health and disease. Biochimica Et Biophysica Acta - General Subjects, 2014, 1840, 1276-1284.	2.4	184
63	Integrated phenotypic and activity-based profiling links Ces3 to obesity and diabetes. Nature Chemical Biology, 2014, 10, 113-121.	8.0	110
64	New gene targets of PGC-1α and ERRα co-regulation in C2C12 myotubes. Molecular Biology Reports, 2014, 41, 8009-8017.	2.3	8
65	PGC-1α and PGC-1β increase CrT expression and creatine uptake in myotubes via ERRα. Biochimica Et Biophysica Acta - Molecular Cell Research, 2014, 1843, 2937-2943.	4.1	24
66	Influence of divergent exercise contraction mode and whey protein supplementation on atrogin-1, MuRF1, and FOXO1/3A in human skeletal muscle. Journal of Applied Physiology, 2014, 116, 1491-1502.	2.5	29
67	High-dose vitamin C supplementation increases skeletal muscle vitamin C concentration and SVCT2 transporter expression but does not alter redox status in healthy males. Free Radical Biology and Medicine, 2014, 77, 130-138.	2.9	20
68	200. Cytokine, 2014, 70, 76.	3.2	0
69	Objectively measured muscle fatigue in Crohn's disease: Correlation with self-reported fatigue and associated factors for clinical application. Journal of Crohn's and Colitis, 2014, 8, 137-146.	1.3	50
70	Regulation of miRNAs in human skeletal muscle following acute endurance exercise and shortâ€ŧerm endurance training. Journal of Physiology, 2013, 591, 4637-4653.	2.9	207
71	Effect of resistance exercise contraction mode and protein supplementation on members of the STARS signalling pathway. Journal of Physiology, 2013, 591, 3749-3763.	2.9	22
72	Regulation of the STARS signaling pathway in response to endurance and resistance exercise and training. Pflugers Archiv European Journal of Physiology, 2013, 465, 1317-1325.	2.8	11

#	Article	IF	CITATIONS
73	Androgen-dependent impairment of myogenesis in spinal and bulbar muscular atrophy. Acta Neuropathologica, 2013, 126, 109-121.	7.7	41
74	Ndrg2 is a PGC-1α/ERRα target gene that controls protein synthesis and expression of contractile-type genes in C2C12 myotubes. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 3112-3123.	4.1	19
75	Disruption of skeletal muscle mitochondrial network genes and miRNAs in amyotrophic lateral sclerosis. Neurobiology of Disease, 2013, 49, 107-117.	4.4	194
76	Peroxisome Proliferator-activated Receptor Î ³ Coactivator 1 (PGC-1)- and Estrogen-related Receptor (ERR)-induced Regulator in Muscle 1 (PERM1) Is a Tissue-specific Regulator of Oxidative Capacity in Skeletal Muscle Cells. Journal of Biological Chemistry, 2013, 288, 25207-25218.	3.4	80
77	MicroRNAs in skeletal muscle and their regulation with exercise, ageing, and disease. Frontiers in Physiology, 2013, 4, 266.	2.8	87
78	The role and regulation of erythropoietin (EPO) and its receptor in skeletal muscle: how much do we really know?. Frontiers in Physiology, 2013, 4, 176.	2.8	32
79	Striated muscle activator of Rho signaling is required for myotube survival but does not influence basal protein synthesis or degradation. American Journal of Physiology - Cell Physiology, 2013, 305, C414-C426.	4.6	10
80	Thiol-based antioxidant supplementation alters human skeletal muscle signaling and attenuates its inflammatory response and recovery after intense eccentric exercise. American Journal of Clinical Nutrition, 2013, 98, 233-245.	4.7	115
81	Resistance exercise increases NF-κB activity in human skeletal muscle. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2012, 302, R667-R673.	1.8	82
82	The regulation and function of the striated muscle activator of rho signaling (STARS) protein. Frontiers in Physiology, 2012, 3, 469.	2.8	22
83	Tyk2 and Stat3 Regulate Brown Adipose Tissue Differentiation and Obesity. Cell Metabolism, 2012, 16, 814-824.	16.2	81
84	Kruppel-like factor 15 regulates skeletal muscle lipid flux and exercise adaptation. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 6739-6744.	7.1	103
85	Hsp72 preserves muscle function and slows progression of severe muscular dystrophy. Nature, 2012, 484, 394-398.	27.8	243
86	Brown adipocyte progenitor population is modified in obese and diabetic skeletal muscle. International Journal of Obesity, 2012, 36, 155-158.	3.4	15
87	Striated muscle activator of Rho signalling (STARS) is a PGCâ€1α/oestrogenâ€related receptorâ€Î± target gene and is upregulated in human skeletal muscle after endurance exercise. Journal of Physiology, 2011, 589, 2027-2039.	2.9	48
88	The role and regulation of MAFbx/atrogin-1 and MuRF1 in skeletal muscle atrophy. Pflugers Archiv European Journal of Physiology, 2011, 461, 325-335.	2.8	278
89	Molecular Mechanisms of Inflammation. Anti-Inflammatory Benefits of Virgin Olive Oil and the Phenolic Compound Oleocanthal. Current Pharmaceutical Design, 2011, 17, 754-768.	1.9	173
90	Age-Related Changes in the Molecular Regulation of Skeletal Muscle Mass. , 2011, , 207-221.		0

6

#	Article	IF	CITATIONS
91	MicroRNAs in skeletal muscle: their role and regulation in development, disease and function. Journal of Physiology, 2010, 588, 4075-4087.	2.9	226
92	Molecular regulation of skeletal muscle mass. Clinical and Experimental Pharmacology and Physiology, 2010, 37, 378-384.	1.9	64
93	Maternal creatine supplementation from mid-pregnancy protects the newborn spiny mouse diaphragm from intrapartum hypoxia-induced damage. Pediatric Research, 2010, 68, 1.	2.3	40
94	PPARÎ ³ inhibits NF-κB-dependent transcriptional activation in skeletal muscle. American Journal of Physiology - Endocrinology and Metabolism, 2009, 297, E174-E183.	3.5	155
95	Atroginâ€1, MuRF1, and FoXO, as well as phosphorylated GSKâ€3β and 4Eâ€BP1 are reduced in skeletal muscle of chronic spinal cord–injured patients. Muscle and Nerve, 2009, 40, 69-78.	2.2	71
96	Developmental changes in the expression of creatine synthesizing enzymes and creatine transporter in a precocial rodent, the spiny mouse. BMC Developmental Biology, 2009, 9, 39.	2.1	55
97	Regulation of STARS and its downstream targets suggest a novel pathway involved in human skeletal muscle hypertrophy and atrophy. Journal of Physiology, 2009, 587, 1795-1803.	2.9	78
98	Granulocyte colony-stimulating factor receptor: Stimulating granulopoiesis and much more. International Journal of Biochemistry and Cell Biology, 2009, 41, 2372-2375.	2.8	85
99	A Reservoir of Brown Adipocyte Progenitors in Human Skeletal Muscle. Stem Cells, 2008, 26, 2425-2433.	3.2	162
100	Human Sarcopenia Reveals an Increase in SOCS-3 and Myostatin and a Reduced Efficiency of Akt Phosphorylation. Rejuvenation Research, 2008, 11, 163-175B.	1.8	231
101	Thrifty metabolism that favors fat storage after caloric restriction: a role for skeletal muscle phosphatidylinositolâ€3â€kinase activity and AMPâ€activated protein kinase. FASEB Journal, 2008, 22, 774-785.	0.5	49
102	Muscle Atrophy and Hypertrophy Signaling Pathways in COPD: A Role in Muscle Remodeling?. American Journal of Respiratory and Critical Care Medicine, 2008, 177, 122-123.	5.6	0
103	Cultured muscle cells display defects of mitochondrial myopathy ameliorated by anti-oxidants. Brain, 2007, 130, 2715-2724.	7.6	13
104	Muscle Atrophy and Hypertrophy Signaling in Patients with Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine, 2007, 176, 261-269.	5.6	200
105	Improved skeletal muscle oxidative enzyme activity and restoration of PGC-1α and PPARβ/δ gene expression upon rosiglitazone treatment in obese patients with type 2 diabetes mellitus. International Journal of Obesity, 2007, 31, 1302-1310.	3.4	143
106	Upregulation of peroxisome proliferator-activated receptor gamma coactivator gene (PGC1A) during weight loss is related to insulin sensitivity but not to energy expenditure. Diabetologia, 2007, 50, 2348-2355.	6.3	77
107	Akt signalling through GSK-3β, mTOR and Foxo1 is involved in human skeletal muscle hypertrophy and atrophy. Journal of Physiology, 2006, 576, 923-933.	2.9	311
108	Peroxisome proliferator-activated receptor-γ coactivator-1 and insulin resistance: acute effect of fatty acids. Diabetologia, 2006, 49, 2419-2426.	6.3	68

#	Article	IF	CITATIONS
109	Reduced Skeletal Muscle Uncoupling Protein-3 Content in Prediabetic Subjects and Type 2 Diabetic Patients: Restoration by Rosiglitazone Treatment. Journal of Clinical Endocrinology and Metabolism, 2006, 91, 1520-1525.	3.6	61
110	Human skeletal muscle atrophy in amyotrophic lateral sclerosis reveals a reduction in Akt and an increase in atroginâ€1. FASEB Journal, 2006, 20, 583-585.	0.5	127
111	A role for skeletal muscle stearoyl oA desaturase 1 in control of thermogenesis. FASEB Journal, 2006, 20, 1751-1753.	0.5	30
112	Effect of 2 weeks of endurance training on uncoupling protein 3 content in untrained human subjects. Acta Physiologica Scandinavica, 2005, 183, 273-280.	2.2	19
113	Exercise in the fasted state facilitates fibre type-specific intramyocellular lipid breakdown and stimulates glycogen resynthesis in humans. Journal of Physiology, 2005, 564, 649-660.	2.9	111
114	Mitofusins 1/2 and ERRα expression are increased in human skeletal muscle after physical exercise. Journal of Physiology, 2005, 567, 349-358.	2.9	348
115	Glucose ingestion during exercise blunts exercise-induced gene expression of skeletal muscle fat oxidative genes. American Journal of Physiology - Endocrinology and Metabolism, 2005, 289, E1023-E1029.	3.5	79
116	PGC-1α and Exercise: Important Partners in Combating Insulin Resistance. Current Diabetes Reviews, 2005, 1, 175-181.	1.3	41
117	Regulation of metabolic transcriptional coâ€activators and transcription factors with acute exercise. FASEB Journal, 2005, 19, 986-988.	0.5	152
118	Redistribution of Glucose From Skeletal Muscle to Adipose Tissue During Catch-Up Fat. Diabetes, 2005, 54, 751-756.	0.6	147
119	Antioxidant defences and homeostasis of reactive oxygen species in different human mitochondrial DNA-depleted cell lines. FEBS Journal, 2004, 271, 3646-3656.	0.2	40
120	Lipotoxicity: the obese and endurance-trained paradox. International Journal of Obesity, 2004, 28, S66-S71.	3.4	52
121	COPD Results in a Reduction in UCP3 Long mRNA and UCP3 Protein Content in Types I and IIa Skeletal Muscle Fibers. Journal of Cardiopulmonary Rehabilitation and Prevention, 2004, 24, 332-339.	0.5	17
122	UCP3 protein expression is lower in type I, Ila and IIx muscle fiber types of endurance-trained compared to untrained subjects. Pflugers Archiv European Journal of Physiology, 2003, 445, 563-569.	2.8	61
123	UCP3 Protein Regulation in Human Skeletal Muscle Fibre Types I, IIa and IIx is Dependent on Exercise Intensity. Journal of Physiology, 2003, 550, 855-861.	2.9	47
124	Lipid peroxidation in skeletal muscle of obese as compared to endurance-trained humans: a case of good vs. bad lipids?. FEBS Letters, 2003, 551, 104-106.	2.8	129
125	Endurance Training in Humans Leads to Fiber Type-Specific Increases in Levels of Peroxisome Proliferator-Activated Receptor-Â Coactivator-1 and Peroxisome Proliferator-Activated Receptor-Â in Skeletal Muscle. Diabetes, 2003, 52, 2874-2881.	0.6	405
126	Decreased Fatty Acid β-Oxidation in Riboflavin-Responsive, Multiple Acylcoenzyme A Dehydrogenase-Deficient Patients Is Associated with an Increase in Uncoupling Protein-3. Journal of Clinical Endocrinology and Metabolism, 2003, 88, 5921-5926.	3.6	29

#	Article	IF	CITATIONS
127	Slow component of V̇O2 kinetics: the effect of training status, fibre type, UCP3 mRNA and citrate synthase activity. International Journal of Obesity, 2002, 26, 157-164.	3.4	41
128	Old and new determinants in the regulation of energy expenditure. Journal of Endocrinological Investigation, 2002, 25, 862-866.	3.3	4
129	β1/β2/β3-adrenoceptor knockout mice are obese and cold-sensitive but have normal lipolytic responses to fasting. FEBS Letters, 2002, 530, 37-40.	2.8	116
130	Effect of acute exercise on uncoupling protein 3 is a fat metabolism-mediated effect. American Journal of Physiology - Endocrinology and Metabolism, 2002, 282, E11-E17.	3.5	70
131	Expression of uncoupling protein-3 in subsarcolemmal and intermyofibrillar mitochondria of various mouse muscle types and its modulation by fasting. FEBS Journal, 2002, 269, 2878-2884.	0.2	43
132	Skeletal muscle heterogeneity in fasting-induced upregulation of genes encoding UCP2, UCP3, PPARÎ ³ and key enzymes of lipid oxidation. Pflugers Archiv European Journal of Physiology, 2002, 445, 80-86.	2.8	43
133	Effects of practice and preferred rate on perceived exertion, metabolic variables and movement control. Human Movement Science, 1999, 18, 137-153.	1.4	33
134	Prediction of elite schoolboy 2000-m rowing ergometer performance from metabolic, anthropometric and strength variables. Journal of Sports Sciences, 1998, 16, 749-754.	2.0	68