
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5900277/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mechanism investigation and product selectivity control on CO-assisted direct conversion of methane into C1 and C2 oxygenates catalyzed by zeolite-supported Rh. Applied Catalysis B: Environmental, 2022, 300, 120742.	20.2	18
2	Highly Dispersed Co/Zn-Doped Zeolitic Imidazolate Framework-Derived Carbon Nanoparticles with High NO Adsorption Capacity at Low Operating Temperature. Industrial & Engineering Chemistry Research, 2022, 61, 3601-3609.	3.7	3
3	Differences in Catalytic Activity and Durability of Nitrogen Sites on Nitrided SBA-15 or Porous Carbon Nitride. Journal of the Japan Petroleum Institute, 2022, 65, 116-124.	0.6	1
4	Synthesis of Carbon Nanoparticles with Cobalt-Rich Shell via Pyrolysis of Zn-ZIF@Co/Zn-ZIF: Relevance of Co(III) Precursors. Inorganic Chemistry, 2022, 61, 7859-7868.	4.0	2
5	Phase Change Materialâ€Containing Mesoporous Zeolite Composite for Adsorption Heat Recovery. Advanced Materials Interfaces, 2021, 8, 2001085.	3.7	5
6	Kinetic and spectroscopic insights into the behaviour of Cu active site for NH3-SCR over zeolites with several topologies. Catalysis Science and Technology, 2021, 11, 2718-2733.	4.1	10
7	Selective catalytic reduction of NO with NH3 over Cu-exchanged CHA, GME, and AFX zeolites: a density functional theory study. Catalysis Science and Technology, 2021, 11, 1780-1790.	4.1	12
8	Selective methanol formation <i>via</i> CO-assisted direct partial oxidation of methane over copper-containing CHA-type zeolites prepared by one-pot synthesis. Green Chemistry, 2021, 23, 2148-2154.	9.0	11
9	High NH ₃ -SCR reaction rate with low dependence on O ₂ partial pressure over Al-rich Cu–*BEA zeolite. RSC Advances, 2021, 11, 10381-10384.	3.6	5
10	AFX Zeolite for Use as a Support of NH3-SCR Catalyst Mining through AICE Joint Research Project of Industries–Academia–Academia. Catalysts, 2021, 11, 163.	3.5	7
11	Multiple templating strategy for the control of aluminum and phosphorus distributions in AFX zeolite. Microporous and Mesoporous Materials, 2021, 321, 111124.	4.4	5
12	Impact of the Zeolite Cage Structure on Product Selectivity in CO-assisted Direct Partial Oxidation of Methane over Rh Supported AEI-, CHA-, and AFX-type Zeolites. Chemistry Letters, 2021, 50, 1597-1600.	1.3	3
13	Selective catalytic reduction of NO over Cu-AFX zeolites: mechanistic insights from <i>in situ</i> / <i>operando</i> spectroscopic and DFT studies. Catalysis Science and Technology, 2021, 11, 4459-4470.	4.1	6
14	Dry gel conversion synthesis of Cu/SSZ-13 as a catalyst with high performance for NH3-SCR. Microporous and Mesoporous Materials, 2020, 297, 109780.	4.4	13
15	Formation and Reactions of NH ₄ NO ₃ during Transient and Steady-State NH ₃ -SCR of NO _{<i>x</i>} over H-AFX Zeolites: Spectroscopic and Theoretical Studies. ACS Catalysis, 2020, 10, 2334-2344.	11.2	67
16	Theoretical study on 31P NMR chemical shifts of phosphorus-modified CHA zeolites. Microporous and Mesoporous Materials, 2020, 294, 109908.	4.4	26
17	Understanding the high hydrothermal stability and NH3-SCR activity of the fast-synthesized ERI zeolite. Journal of Catalysis, 2020, 391, 346-356.	6.2	27
18	Mesoporous Zeolite for Use as Dual-functional Heat-storage Adsorbent. Chemistry Letters, 2020, 49, 450-452.	1.3	2

#	Article	IF	CITATIONS
19	Ultrafast Encapsulation of Metal Nanoclusters into MFI Zeolite in the Course of Its Crystallization: Catalytic Application for Propane Dehydrogenation. Angewandte Chemie - International Edition, 2020, 59, 19669-19674.	13.8	63
20	Reaction Pathways in the Chemical Transformation of CO ₂ with <i>l²</i> , <i>l³</i> -Unsaturated Alcohols into Cyclic Carbonates Catalyzed by Methylated Nitrogen-substituted SBA-15. Journal of the Japan Petroleum Institute, 2020, 63, 149-157.	0.6	2
21	Effect of delamination on active base site formation over nitrided MWW-type zeolite for Knoevenagel condensation. Microporous and Mesoporous Materials, 2020, 299, 110104.	4.4	8
22	COâ€Assisted Direct Methane Conversion into C ₁ and C ₂ Oxygenates over ZSMâ€5 Supported Transition and Platinum Group Metal Catalysts Using Oxygen as an Oxidant. ChemCatChem, 2020, 12, 2957-2961.	3.7	26
23	Parametric Study of Fixed-Bed Dehumidification Using a PCM-Containing Adsorbent for Effective Recovery of Heat of Adsorption. Journal of Chemical Engineering of Japan, 2020, 53, 626-635.	0.6	0
24	NH3-SCR by monolithic Cu-ZSM-5 and Cu-AFX catalysts: Kinetic modeling and engine bench tests. Catalysis Today, 2019, 332, 59-63.	4.4	28
25	Primary, secondary, and tertiary silanamine sites formed on nitrided SBA-15 for base catalytic C C bond formation reactions. Journal of Catalysis, 2019, 378, 131-139.	6.2	8
26	Effect of Zeolite Topology on Cu Active Site Formation for NO Direct Decomposition. Bulletin of the Chemical Society of Japan, 2019, 92, 1935-1944.	3.2	2
27	Theoretical Evaluation of an Organic Phase Change Material (PCM)-Inserted Dual-Functional Adsorbent for the Recovery of Heat of Adsorption. Industrial & Engineering Chemistry Research, 2019, 58, 10114-10118.	3.7	7
28	Development of Imidazo[1,2- <i>a</i>]pyridine Derivatives with an Intramolecular Hydrogen-Bonded Seven-Membered Ring Exhibiting Bright ESIPT Luminescence in the Solid State. Organic Letters, 2019, 21, 2143-2146.	4.6	34
29	Intracrystalline diffusivity of lignin-derived benzene derivatives in silicalite-1 crystal in aqueous-phase system. Microporous and Mesoporous Materials, 2018, 261, 9-17.	4.4	0
30	A Collective Case Screening of the Zeolites made in Japan for High Performance NH3-SCR of NOx. Bulletin of the Chemical Society of Japan, 2018, 91, 355-361.	3.2	36
31	Identification of the Basic Sites on Nitrogen-Substituted Microporous and Mesoporous Silicate Frameworks Using CO ₂ as a Probe Molecule. Langmuir, 2018, 34, 1376-1385.	3.5	8
32	Confinement effect on enthalpy of fusion and melting point of organic phase change materials in cylindrical nanospace of mesoporous silica and carbon. Adsorption, 2018, 24, 345-355.	3.0	15
33	Carbonate synthesis from carbon dioxide and cyclic ethers over methylated nitrogen-substituted mesoporous silica. Molecular Catalysis, 2018, 454, 38-43.	2.0	13
34	The 7th China–Japan Workshop on Environmental Catalysis and Eco-Materials was held in Guangzhou, China, November 6th–9th, 2015. Catalysis Today, 2017, 281, 411.	4.4	0
35	Aggregation and redispersion of silver species on alumina and sulphated alumina supports for soot oxidation. Catalysis Science and Technology, 2017, 7, 3524-3530.	4.1	21
36	Direct decomposition of NO on metal-loaded zeolites with coexistence of oxygen and water vapor under unsteady-state conditions by NO concentration and microwave rapid heating. Catalysis Today, 2017, 281, 566-574.	4.4	21

#	Article	IF	CITATIONS
37	"Super Hydrocarbon Reformer Trap―for the Complete Oxidation of Toluene Using Ironâ€Exchanged βâ€Zeolite with a Low Silicon/Aluminum Ratio. ChemCatChem, 2016, 8, 2516-2524.	3.7	19
38	Insights into the accessibility of Zr in Zr/SBA-15 mesoporous silica supports with increasing Zr loadings. Microporous and Mesoporous Materials, 2016, 225, 440-449.	4.4	17
39	On the drastic reduction of organic structure directing agent in the steam-assisted crystallization of zeolite with hierarchical porosity. Microporous and Mesoporous Materials, 2016, 230, 30-38.	4.4	35
40	Two-step Catalytic System Using Pulsatile Heating to Achieve NO Decomposition in the Presence of Water Vapor. Chemistry Letters, 2016, 45, 1283-1284.	1.3	3
41	Al-rich beta zeolites. Distribution of Al atoms in the framework and related protonic and metal-ion species. Journal of Catalysis, 2016, 333, 102-114.	6.2	86
42	Mesoporogen-free synthesis of hierarchically porous ZSM-5 below 100°C. Microporous and Mesoporous Materials, 2016, 226, 344-352.	4.4	34
43	Direct observation of catalytic oxidation of particulate matter using in situ TEM. Scientific Reports, 2015, 5, 10161.	3.3	20
44	Theoretical investigation of novel two-step decomposition of nitric oxide over Fe(II) ion-exchanged zeolites using DFT calculations. Catalysis Today, 2015, 242, 343-350.	4.4	16
45	Carbonateâ€Promoted Catalytic Activity of Potassium Cations for Soot Combustion by Gaseous Oxygen. ChemCatChem, 2014, 6, 479-484.	3.7	26
46	Stabilization of bare divalent Fe(II) cations in Al-rich beta zeolites for superior NO adsorption. Journal of Catalysis, 2014, 315, 1-5.	6.2	29
47	A Unique Heterogeneous Nucleophilic Catalyst Comprising Methylated Nitrogen-Substituted Porous Silica Provides High Product Selectivity for the Morita–Baylis–Hillman Reaction. Journal of the American Chemical Society, 2014, 136, 119-121.	13.7	18
48	Heat storage properties of organic phase-change materials confined in the nanospace of mesoporous SBA-15 and CMK-3. Physical Chemistry Chemical Physics, 2014, 16, 5495-5498.	2.8	70
49	Sodalite Layer as a Protective Barrier for Diesel Particulate Filters. Bulletin of the Chemical Society of Japan, 2013, 86, 363-369.	3.2	0
50	Nepheline Synthesized from Sodalite as Diesel-Soot Combustion Catalyst: Structure–Property Relationship Study for an Enhanced Water Tolerance. Bulletin of the Chemical Society of Japan, 2012, 85, 527-532.	3.2	5
51	Mechanistic Study on the Synthesis of a Porous Zincosilicate VPI-7 Containing Three-Membered Rings. Journal of Physical Chemistry C, 2011, 115, 443-446.	3.1	19
52	Alkali Carbonate Stabilized on Aluminosilicate via Solid Ion Exchange as a Catalyst for Diesel Soot Combustion. Journal of Physical Chemistry C, 2011, 115, 14892-14898.	3.1	29
53	A Simple Modification Creates a Great Difference: New Solid-Base Catalyst Using Methylated N-Substituted SBA-15. Journal of the American Chemical Society, 2011, 133, 20030-20032.	13.7	58
54	A mechanistic study on the synthesis of MCM-22 from SBA-15 by dry gel conversion to form a micro- and mesoporous composite. Catalysis Today, 2011, 168, 118-123.	4.4	12

#	Article	IF	CITATIONS
55	Promising catalytic performance and shape-selectivity of nitrogen-doped siliceous MFI zeolite for base-catalyzed reactions. Microporous and Mesoporous Materials, 2010, 132, 290-295.	4.4	37
56	Synthesis and characterization of aluminium containing CIT-1 and their structure–property relationship to hydrocarbon trap performance. Microporous and Mesoporous Materials, 2010, 129, 126-135.	4.4	16
57	Location of Alkali Ions and their Relevance to Crystallization of Low Silica X Zeolite. Crystal Growth and Design, 2010, 10, 3471-3479.	3.0	46
58	Pt/CeO2–ZrO2 present in the mesopores of SBA-15—a better catalyst for CO oxidation. Physical Chemistry Chemical Physics, 2010, 12, 7513.	2.8	21
59	Cooperative Effect of Sodium and Potassium Cations on Synthesis of Ferrierite. Topics in Catalysis, 2009, 52, 67-74.	2.8	39
60	Characterization of sulfated zirconia prepared using reference catalysts and application to several model reactions. Applied Catalysis A: General, 2009, 360, 89-97.	4.3	27
61	Changes in the medium-range order during crystallization of aluminosilicate zeolites characterized by high-energy X-ray diffraction technique. Journal of the Ceramic Society of Japan, 2009, 117, 277-282.	1.1	20
62	Towards Realization of a Micro- and Mesoporous Composite Silicate Catalyst. Catalysis Surveys From Asia, 2008, 12, 16-27.	2.6	42
63	A New Method for Postâ€Synthesis Coating of Zirconia on the Mesopore Walls of SBAâ€15 Without Pore Blocking. Advanced Materials, 2008, 20, 2131-2136.	21.0	98
64	Effective factors on solid phase conversion of Fe-containing mesoporous silica into Fe-beta. Microporous and Mesoporous Materials, 2008, 114, 229-237.	4.4	8
65	Potassium-doped sodalite: A tectoaluminosilicate for the catalytic material towards continuous combustion of carbonaceous matters. Applied Catalysis B: Environmental, 2008, 77, 294-299.	20.2	41
66	Solid acid porous materials for the catalytic transformation of 1-adamantanol. Catalysis Today, 2008, 131, 367-371.	4.4	4
67	Post-synthesis coating of alumina on the mesopore walls of SBA-15 by ammonia/water vapour induced internal hydrolysis and its consequences on pore structure and acidity. Microporous and Mesoporous Materials, 2008, 116, 406-415.	4.4	31
68	Nepheline from K ₂ CO ₃ /Nanosized Sodalite as a Prospective Candidate for Diesel Soot Combustion. Journal of the American Chemical Society, 2008, 130, 12844-12845.	13.7	81
69	Intermediate-range Order in Mesoporous Silicas Investigated by a High-energy X-ray Diffraction Technique. Chemistry Letters, 2008, 37, 30-31.	1.3	10
70	Assembling mode of alumina and zirconia particles inside the mesopores of SBA-15 under high loading. Studies in Surface Science and Catalysis, 2008, 174, 161-166.	1.5	2
71	Role of heteroatoms in precursor formation of zeolites. Studies in Surface Science and Catalysis, 2007, 170, 506-511.	1.5	2
72	Synthesis of 2-Adamantane Derivatives from 1-Adamantanol on Solid Acid Catalysts. Industrial & Engineering Chemistry Research, 2007, 46, 1039-1044.	3.7	4

MASARU OGURA

#	Article	IF	CITATIONS
73	In situ Small-Angle and Wide-Angle X-ray Scattering Investigation on Nucleation and Crystal Growth of Nanosized Zeolite A. Chemistry of Materials, 2007, 19, 1906-1917.	6.7	87
74	Effects of silicon sources on the formation of nanosized LTA: An in situ small angle X-ray scattering and wide angle X-ray scattering study. Microporous and Mesoporous Materials, 2007, 101, 134-141.	4.4	22
75	Formation of ZMM-n: The composite materials having both natures of zeolites and mesoporous silica materials. Microporous and Mesoporous Materials, 2007, 101, 224-230.	4.4	23
76	Hydrocarbon Reformer Trap by Use of Transition Metal Oxide-Incorporated Beta Zeolites. Catalysis Letters, 2007, 118, 72-78.	2.6	24
77	A new approach to the determination of atomic-architecture of amorphous zeolite precursors by high-energy X-ray diffraction technique. Physical Chemistry Chemical Physics, 2006, 8, 224-227.	2.8	88
78	In situ observation of homogeneous nucleation of nanosized zeolite A. Physical Chemistry Chemical Physics, 2006, 8, 1335.	2.8	32
79	A comparative study of zeolites SSZ-33 and MCM-68 for hydrocarbon trap applications. Microporous and Mesoporous Materials, 2006, 96, 210-215.	4.4	56
80	Phase selection of FAU and LTA zeolites by controlling synthesis parameters. Microporous and Mesoporous Materials, 2006, 89, 227-234.	4.4	60
81	Phase and orientation control of mesoporous silica thin film via phase transformation. Thin Solid Films, 2006, 495, 11-17.	1.8	23
82	Phase transformation in mesoporous silica films induced by the degradation of organic moiety. Journal of Porous Materials, 2006, 13, 303-306.	2.6	2
83	Synthesis of single-walled carbon nanotubes in mesoporous silica film and their field emission property. Applied Physics A: Materials Science and Processing, 2006, 84, 247-250.	2.3	11
84	Standardization of catalyst preparation using reference catalyst: ion exchange of mordenite type zeolite. Applied Catalysis A: General, 2005, 283, 63-74.	4.3	16
85	Standardization of catalyst preparation using reference catalyst: ion exchange of mordenite type zeolite. Applied Catalysis A: General, 2005, 283, 75-84.	4.3	16
86	Silicoaluminophosphate molecular sieves as a hydrocarbon trap. Applied Catalysis B: Environmental, 2005, 57, 31-36.	20.2	43
87	Preparation and characterization of proton-conducting CsHSO4–SiO2 nanocomposite electrolyte membranes. Solid State Ionics, 2005, 176, 755-760.	2.7	47
88	Effect of water vapor on proton conduction of cesium dihydrogen phosphateand application to intermediate temperature fuel cells. Journal of Applied Electrochemistry, 2005, 35, 865-870.	2.9	48
89	Synthesis of mesoporous aluminosilicate with zeolitic characteristics using vapor phase transport. Chemical Communications, 2005, , 2719.	4.1	19
90	Fabrication of Mesoporous Silica Films via a Novel Route Providing a Wide Processing Time Window. Industrial & Engineering Chemistry Research, 2005, 44, 4156-4160.	3.7	6

MASARU OGURA

#	Article	IF	CITATIONS
91	Characterization of ESR Active Species on Lithium Chloride-Modified Mesoporous Silica. Journal of Physical Chemistry B, 2005, 109, 8574-8579.	2.6	10
92	Growth of vertically aligned single-walled carbon nanotube films on quartz substrates and their optical anisotropy. Chemical Physics Letters, 2004, 385, 298-303.	2.6	522
93	Characteristics of MnOx electrochemical capacitors with solid electrolyte (CsHSO4) operated at elevated temperatures. Solid State Ionics, 2004, 175, 507-510.	2.7	10
94	[Ge9O14(OH)12](C6N2H16)2ïį¼2H2O: A Novel Germanate with Ge?O Helical Chains Formed by Hydrothermal Synthesis that Can Separatetrans andcis Isomers in Situ. European Journal of Inorganic Chemistry, 2004, 2004, 4547-4549.	2.0	9
95	The Hydrothermal Synthesis and Crystal Structure of (H2O)[Ge5O10] and [(CH3)4N][Ge10O20OH], Two Novel Porous Germanates ChemInform, 2004, 35, no.	0.0	0
96	Hydrothermal synthesis and structure of ASU-14 topological framework by using ethylenediamine as a structure-directing agent. Microporous and Mesoporous Materials, 2004, 70, 1-6.	4.4	18
97	Studies on mesoporous silica films synthesized using F127, a triblock co-polymer. Microporous and Mesoporous Materials, 2004, 75, 51-59.	4.4	31
98	Preparation of solar grade silicon from optical fibers wastes with thermal plasmas. Solar Energy Materials and Solar Cells, 2004, 81, 477-483.	6.2	16
99	Morphology and chemical state of Co?Mo catalysts for growth ofBsingle-walled carbon nanotubes vertically aligned on quartz substrates. Journal of Catalysis, 2004, 225, 230-239.	6.2	133
100	Synthesis of MCM-41-type mesoporous materials using filtrate of alkaline dissolution of ZSM-5 zeolite. Microporous and Mesoporous Materials, 2004, 74, 163-170.	4.4	76
101	Development of a Technology for Silicon Production by Recycling Wasted Optical Fiber. Industrial & Engineering Chemistry Research, 2004, 43, 1890-1893.	3.7	7
102	SSZ-33:Â A Promising Material for Use as a Hydrocarbon Trap. Journal of Physical Chemistry B, 2004, 108, 13059-13061.	2.6	56
103	Protonic Conduction and Impedance Analysis in CsHSO[sub 4]/SiO[sub 2] Composite Systems. Journal of the Electrochemical Society, 2004, 151, J76.	2.9	32
104	Investigation on the Drying Induced Phase Transformation of Mesoporous Silica; A Comprehensive Understanding toward Mesophase Determination. Journal of the American Chemical Society, 2004, 126, 10937-10944.	13.7	51
105	The Hydrothermal Synthesis and Crystal Structure of (H2O)[Ge5O10] and [(CH3)4N][Ge10O20OH], Two Novel Porous Germanates. Chemistry Letters, 2004, 33, 74-75.	1.3	17
106	Synthesis of Mesoporous Silica Thin Film with Three-dimensional Accessible Pore Structure. Chemistry Letters, 2004, 33, 1078-1079.	1.3	16
107	Determination of Silica Mesophases by Controlling Silicate Condensation in Liquid Phase. Chemistry Letters, 2004, 33, 734-735.	1.3	6
108	Temporal analysis of products (TAP) study on oxygen storage properties over Ptâ^'Rh/CeO2 catalyst. Research on Chemical Intermediates, 2003, 29, 755-760.	2.7	4

#	Article	IF	CITATIONS
109	Aluminosilicate Species in the Hydrogel Phase Formed during the Aging Process for the Crystallization of FAU Zeolite. Chemistry of Materials, 2003, 15, 2661-2667.	6.7	127
110	Decomposition of CH2FCF3(134a) over Metal Phosphate Catalysts. Industrial & Engineering Chemistry Research, 2002, 41, 2585-2590.	3.7	30
111	Co Cation Effects on Activity and Stability of Isolated Pd(II) Cations in Zeolite Matrices for Selective Catalytic Reduction of Nitric Oxide with Methane. Journal of Catalysis, 2002, 211, 75-84.	6.2	31
112	Promotion effects of an extremely low concentration of noble metals supported onto Bi2Mo3O12 on the partial oxidation of iso-butane. Applied Catalysis A: General, 2002, 225, 215-221.	4.3	9
113	Crystallization behavior of zeolite beta during steam-assisted crystallization of dry gel. Microporous and Mesoporous Materials, 2002, 56, 1-10.	4.4	100
114	Mesoporous Material from Zeolite. Journal of Porous Materials, 2002, 9, 43-48.	2.6	65
115	Synthesis of EMT Zeolite by a Steam-Assisted Crystallization Method Using Crown Ether as a Structure-Directing Agent. Crystal Growth and Design, 2001, 1, 509-516.	3.0	19
116	Quantitative analyses for TEA+ and Na+ contents in zeolite beta with a wide range of Si/2Al ratio. Microporous and Mesoporous Materials, 2001, 48, 23-29.	4.4	26
117	Alkali-treatment technique — new method for modification of structural and acid-catalytic properties of ZSM-5 zeolites. Applied Catalysis A: General, 2001, 219, 33-43.	4.3	422
118	Effect of NH+4 Exchange on Hydrophobicity and Catalytic Properties of Al-Free Ti–Si–beta Zeolite. Journal of Catalysis, 2001, 199, 41-47.	6.2	41
119	Catalytic Activity of Ir for NO-CO Reaction in the Presence of SO2and Excess Oxygen. Chemistry Letters, 2000, 29, 146-147.	1.3	71
120	Formation of Uniform Mesopores in ZSM-5 Zeolite through Treatment in Alkaline Solution. Chemistry Letters, 2000, 29, 882-883.	1.3	257
121	Remarkable enhancement in durability of Pd/H-ZSM-5 zeolite catalysts for CH4-SCR. Applied Catalysis B: Environmental, 2000, 27, L213-L216.	20.2	27
122	Palladium species in Pd/H-ZSM-5 zeolite catalysts for CH4-SCR. Research on Chemical Intermediates, 2000, 26, 55-60.	2.7	4
123	Conversion of dry gel to microporous crystals in gas phase. Topics in Catalysis, 1999, 9, 77-92.	2.8	272
124	Determination of active palladium species in ZSM-5 zeolite for selective reduction of nitric oxide with methane. Applied Catalysis B: Environmental, 1999, 23, 247-257.	20.2	60
125	Intrapore catalysis in reduction of nitric oxide with methane. Catalysis Today, 1998, 42, 159-166.	4.4	42
126	Role of zeolite structure on reduction of NOx with methane over In- and Pd-based catalysts. Catalysis Today, 1998, 45, 139-145.	4.4	48

#	Article	IF	CITATIONS
127	The effect of zeolite structures on the creation of InO+ active sites for NO reduction with methane. Microporous and Mesoporous Materials, 1998, 21, 533-540.	4.4	47
128	Selective reduction of nitric oxide with methane on In/H-ZSM-5-based catalysts. Catalysis Surveys From Asia, 1997, 1, 227-237.	1.2	28
129	Intrapore Catalysis in NO Reduction with Methane on Ir/In/H-ZSM-5 Catalyst. Chemistry Letters, 1996, 25, 1017-1018.	1.3	16
130	Selective Reduction of Nitric Oxide with Methane on Gallium and Indium Containing H-ZSM-5 Catalysts: Formation of Active Sites by Solid-State Ion Exchange. Journal of Catalysis, 1996, 161, 465-470.	6.2	118
131	Reduction of nitric oxide with methane on Pd/Co/H-ZSM-5 catalysts: cooperative effects of Pd and Co. Catalysis Letters, 1996, 42, 185-189.	2.6	78
132	Promotive effect of additives to In/H-ZSM-5 catalyst for selective reduction of nitric oxide with methane in the presence of water vapor. Catalysis Today, 1996, 27, 35-40.	4.4	86
133	Precious Metal Loaded In/H-ZSM-5 for Low Concentration NO Reduction with Methane in the Presence of Water Vapor. Chemistry Letters, 1995, 24, 1135-1136.	1.3	28
134	Mechanism of Selective Catalytic Reduction of NO by Propene on Fe Silicate in Oxygen-Rich Atmosphere. ACS Symposium Series, 1995, , 123-132.	0.5	0