Kenjiro Fujimoto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5900176/publications.pdf

Version: 2024-02-01

91	861	14	27
papers	citations	h-index	g-index
93	93	93	990
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Tbit/inch2 ferroelectric data storage based on scanning nonlinear dielectric microscopy. Applied Physics Letters, 2002, 81, 4401-4403.	3.3	186
2	Elastocaloric effect in CuAlZn and CuAlMn shape memory alloys under compression. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2016, 374, 20150309.	3.4	50
3	Reductive decomposition of nitrate ion to nitrogen in water on a unique hollandite photocatalyst. Applied Catalysis B: Environmental, 1999, 23, 283-289.	20.2	46
4	On the LiNi0.2Mn0.2Co0.6O2 positive electrode material. Journal of Power Sources, 2010, 195, 1510-1515.	7.8	33
5	Combinatorial approach for powder preparation of pseudo-ternary system LiO0.5–X–TiO2 (X: FeO1.5,) Tj ET	Qq1 _{.1} 1 0.7	84314 rgBT /
6	Influence of oxygen gas concentration on hydrogen sensing of Pt/WO3 thin film prepared by sol–gel process. Sensors and Actuators B: Chemical, 2015, 216, 394-401.	7.8	28
7	Sol–gel preparation of Li+ ion conductive thin film. Applied Surface Science, 2002, 189, 300-306.	6.1	25
8	Proton Distribution and Dynamics in Y- and Zn-Doped BaZrO3. Journal of Physical Chemistry C, 2014, 118, 18846-18852.	3.1	24
9	Combinatorial electrode array for high-throughput evaluation of combinatorial library for electrode materials. Applied Surface Science, 2004, 223, 210-213.	6.1	23
10	Title is missing!. Journal of Sol-Gel Science and Technology, 2000, 19, 505-510.	2.4	18
11	LixCo0.4Ni0.3Mn0.3O2 electrode materials: Electrochemical and structural studies. Materials Research Bulletin, 2012, 47, 1936-1941.	5 . 2	18
12	Fabrication of well-isolated graphene and evaluation of thermoelectric performance of polyaniline–graphene composite film. Journal of Materials Science, 2019, 54, 3904-3913.	3.7	18
13	Preparation of Highly Crystallized Strontium Titanate Powders at Room Temperature. Journal of the American Ceramic Society, 2015, 98, 3054-3061.	3.8	17
14	Title is missing!. Journal of Materials Synthesis and Processing, 1998, 6, 329-333.	0.3	15
15	Combinatorial Synthesis of Epitaxial LiCoO ₂ Thin Films on SrTiO ₃ (001) via On-Substrate Sintering of Li ₂ CO ₃ and CoO by Pulsed Laser Deposition. ACS Combinatorial Science, 2016, 18, 343-348.	3.8	15
16	Influence of temperature and humidity on the electrical sensing of Pt/WO ₃ thin film hydrogen gas sensor. Journal of the Ceramic Society of Japan, 2016, 124, 629-633.	1.1	15
17	Preparation of hollandite-type KxGaxSn8â^'xO16 thin film and NO adsorption behavior. Solid State lonics, 2002, 152-153, 769-775.	2.7	14
18	Ethanol Gas Sensing by a Zn-Terminated ZnO(0001) Bulk Single-Crystalline Substrate. ACS Omega, 2020, 5, 21104-21112.	3.5	14

#	Article	IF	CITATIONS
19	Preparation of pseudo-ternary library by combinatorial robot system based on wet and dry processes. Measurement Science and Technology, 2005, 16, 41-45.	2.6	13
20	Thermoelectric properties of Sb-doped Mg2(Si0.95Ge0.05) synthesized by spark plasma sintering. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2015, 195, 45-49.	3.5	13
21	Development of an Automatic, High-Throughput Structural Refinement Method Using Rietveld Analysis. ACS Combinatorial Science, 2020, 22, 35-41.	3.8	13
22	Synthesis of hollandite-type KxGaxSn8â^'xO16 fine particles by the sol-gel method. Journal of Materials Research, 1998, 13, 926-929.	2.6	12
23	Photocatalytic Reduction of NO with C2H6 on a Hollandite-Type Catalyst. Journal of Sol-Gel Science and Technology, 2000, 19, 775-778.	2.4	12
24	Construction of Multilayer Films and Superlattice- and Mosaic-like Heterostructures of 2D Metal Oxide Nanosheets via a Facile Spin-Coating Process. ACS Applied Materials & Samp; Interfaces, 2021, 13, 43258-43265.	8.0	12
25	Afterglow Properties and Trap-Depth Control in $ZrO < sub > 2 < sub > 27$, $ sub > 28$, $ sub $	rgBT /Ov 4.0	erlock 10 Tf 11
26	Fabrication and Mechanical Properties of Textured Ti ₃ SiC ₂ Systems Using Commercial Powder. Materials Transactions, 2018, 59, 829-834.	1.2	10
27	Exploration of layered-type pseudo four-component Li–Ni–Co–Ti oxides. Applied Surface Science, 2007, 254, 704-708.	6.1	9
28	Spectral properties of the Cu-hyperaccumulating moss Scopelophila cataractae. Journal of Photochemistry and Photobiology B: Biology, 2011, 104, 467-472.	3.8	9
29	Charge–discharge properties of a layered-type Li(Ni,Co,Ti)O ₂ powder library. Science and Technology of Advanced Materials, 2011, 12, 054203.	6.1	9
30	Effect of copper stress on cup lichens Cladonia humilis and C. subconistea growing on copper-hyperaccumulating moss Scopelophila cataractae at copper-polluted sites in Japan. Ecotoxicology and Environmental Safety, 2012, 84, 341-346.	6.0	9
31	Thermoelectric properties of bismuth-substituted calcium manganite Ca _{1−} _x Bi <i>_x<td>%gt;F.1</td><td>>MnO<</td></i>	%gt;F.1	>MnO<
32	Disordered off-center direction of Ti ⁴⁺ in pseudo-cubic type BaTiO ₃ prepared by mixed hydroxide process. Journal of the Ceramic Society of Japan, 2021, 129, 73-78.	1.1	9
33	Adsorption Behavior of Nitrogen Monoxide on KxGaxSn8â^'xO16 Hollandite. Journal of Sol-Gel Science and Technology, 2000, 19, 377-381.	2.4	8
34	Design of Seebeck Coefficient Measurement Probe for Powder Library. ACS Combinatorial Science, 2014, 16, 66-70.	3.8	8
35	Improvement of hydrogen gas sensing property of the sol–gel derived Pt/WO ₃ thin film by Ti-doping. Journal of the Ceramic Society of Japan, 2015, 123, 1102-1105.	1.1	8
36	Low-temperature Solid-state Synthesis of Perovskite Oxides under 50 °C. Chemistry Letters, 2016, 45, 226-228.	1.3	8

3

#	Article	IF	CITATIONS
37	Photoabsorption Study of Pigments in Mosses: <i>Scopelophila ligulata</i> Has an Abnormally High Formation Rate of Pheophytin. Chemistry Letters, 2010, 39, 284-285.	1.3	6
38	Fabrication of Textured Ti2AlN Ceramic by Slip Casting in a Strong Magnetic Field and Spark Plasma Sintering. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2014, 61, 538-543.	0.2	6
39	Ion-exchange property of lepidocrocite-type K0.8Zn0.4Ti1.6O4 using NH4NO3 molten salt. Journal of Ion Exchange, 2014, 25, 12-15.	0.3	6
40	Thermoelectric Properties of Mg2Si1-x-yGexSby Prepared by Spark Plasma Sintering. MRS Advances, 2016, 1, 3971-3976.	0.9	5
41	Effect of chemical oxidation of spinel-type LiNi0.5Mn1.3Ti0.2O4 by soaking in HNO3, HCl and H2SO4. Journal of Solid State Chemistry, 2021, 302, 122366.	2.9	5
42	Crystal growth and structure refinement of hollandite-type K1.59Ga1.59Ti6.41O16. Solid State Ionics, 2011, 184, 74-77.	2.7	4
43	Novel Room Temperature Synthesis Process of SrTiO ₃ Fine Particles and Its Photocatalytic Property. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2016, 63, 559-562.	0.2	4
44	Thermoelectric properties of Cr-doped higher manganese silicides prepared using spark plasma sintering. MRS Advances, 2018, 3, 1367-1372.	0.9	4
45	Synthesis of indium tin oxide films from ethyl acetoacetonato complexes at low temperatures. Journal of Sol-Gel Science and Technology, 2021, 100, 68-73.	2.4	4
46	Photoinduced hydrophilicity and photocatalytic decomposition of endocrine-disrupting chemical pentachlorophenol on hollandite. Journal of Materials Research, 2003, 18, 1046-1053.	2.6	3
47	Reactivity of Carbonates in Superheated Steam under Atmospheric Pressure. Key Engineering Materials, 0, 617, 225-228.	0.4	3
48	Low-Temperature Spark Plasma Sintering of ZrW2â^'xMoxO8 Exhibiting Controllable Negative Thermal Expansion. Materials, 2018, 11, 1582.	2.9	3
49	Development of Measurement Tools for High-Throughput Experiments of Synchrotron Radiation XRD and XAFS on Powder Libraries. ACS Combinatorial Science, 2020, 22, 734-737.	3.8	3
50	High-Throughput Preparation and Characterization of Powder and Thin-Film Library for Electrode Materials. Materials Science Forum, 2007, 534-536, 469-472.	0.3	2
51	High-Pressure Combinatorial Process Integrating Hot Isostatic Pressing. ACS Combinatorial Science, 2013, 15, 622-625.	3.8	2
52	Low-Temperature Synthesis of MgAl ₂ O ₄ by Capsule HIP Using Hydroxides as Starting Materials. Key Engineering Materials, 2014, 617, 217-220.	0.4	2
53	Preparation and Thermoelectric Properties of Perovskite-Type A _x Ca _{1-x} B _y Mn _{1-y} O ₃ _{-î} (A;La,Bi,Y,Sr) (B;Ni,Ti,V) Thin-Films by Electrostatic Spray Deposition Method. Key Engineering Materials, 2014. 617. 256-259.	0.4	2
54	Single crystal growth and structure refinement of hollandite-type K1.98Fe1.98Sn6.02O16. Journal of Crystal Growth, 2014, 390, 88-91.	1.5	2

#	Article	IF	CITATIONS
55	Fabrication and Mechanical Properties of Textured Ti ₃ SiC ₂ MAX Phase Systems. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2016, 63, 970-975.	0.2	2
56	Pt/WO3 Nanoparticle-Dispersed Polydimethylsiloxane Membranes for Transparent and Flexible Hydrogen Gas Leakage Sensors. Membranes, 2022, 12, 291.	3.0	2
57	Single-Crystal Growth of Layered Birnessite-Type Manganese Oxides and Their Delamination into MnO ₂ Nanosheets. Crystal Growth and Design, 2022, 22, 625-632.	3.0	2
58	Development of Robot System and X-ray Powder Diffraction for Combinatorial Materials Research. Materials Research Society Symposia Proceedings, 2001, 700, 511.	0.1	1
59	Oxygen dependence of NO adsorption on Hollandite-type KxGaxSn8–x O16 thin film. Research on Chemical Intermediates, 2002, 28, 493-503.	2.7	1
60	Establishment of Reaction Phase Diagrams of Pseudo Quaternary Li-Ni-Co-Ti Oxides Library. Materials Research Society Symposia Proceedings, 2007, 1024, 1.	0.1	1
61	Preparation of Piled Ba(ZrxTi1-x)O3 with Flat Temperature Dependence in Dielectric Constant. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2009, 56, 236-240.	0.2	1
62	Development of the Fe Anodic Catalyst for Solid Oxide Fuel Cell Operated at Intermediate-temperature Direct Utilizing of Dimethylether Fuel. Electrochemistry, 2009, 77, 225-228.	1.4	1
63	Development of the Fe-Ni Anodic Catalyst for Solid Oxide Fuel Cell Operated at Intermediate-temperature Direct Utilizing of Dimethylether Fuel. Electrochemistry, 2009, 77, 149-151.	1.4	1
64	Distribution of K+Cs+lons in the Alkali Layer of (K+, Cs+)- \hat{l}^2 -Ferrite. IOP Conference Series: Materials Science and Engineering, 2011, 18, 022022.	0.6	1
65	Structure refinement of newly gallo-titanogallate type KxGa8Ga8+xSn16â^'xO56. Solid State Ionics, 2011, 184, 70-73.	2.7	1
66	Combinatorial exploration of newly pseudo-quintenary layered-type Li-Ni-Co-Fe-Ti oxides. Materials Research Society Symposia Proceedings, 2012, 1425, 52.	0.1	1
67	Establishment of Pseudoternary LiO0.5–NiO–MnO2 Phase Diagram by Combinatorial Wet Process. ACS Combinatorial Science, 2013, 15, 626-630.	3.8	1
68	Thermoelectric properties of synthesized Mg2Si0.95-xGe0.05Sbx by spark plasma sintering. Materials Research Society Symposia Proceedings, 2015, 1735, 56.	0.1	1
69	Investigation of Mg2Si formation from Si and Mg by using spark plasma sintering synthesis. Materials Research Society Symposia Proceedings, 2015, 1735, 62.	0.1	1
70	Preparation and Characterization of Ca ₃ (Co,M) ₄ O _{9+δ} Type Thermoelectric Materials Using the Electrostatic Spray Deposition Method. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2015, 62, 175-184.	0.2	1
71	Preparation and Characterization of Ca ₃ (Co,M) ₄ O _{9+Î'} Type Thermoelectric Materials Using the Electrostatic Spray Deposition Method. Materials Transactions, 2016, 57, 1482-1488.	1.2	1

Electrode Property of Spinel-type
LiNi_{0.5}Mn_{1.5a^'}<i>_x</i>Vi>Ti<i>_x</i>O₄<0 amount (0 amount) Tj ETQq0 0 0 rgBT /Overl
Japan Society of Powder and Powder Metallurgy, 2016, 63, 679-683.

#	Article	IF	CITATIONS
73	A New Route to Carbon Film Coating by Anodic Electrodeposition from Ionic Liquid Containing Different Phenylsilane Derivatives. Chemistry Letters, 2020, 49, 1349-1352.	1.3	1
74	Reaction mechanism on the formation of (Sr, Ba)TiO3 and Ba(Zr, Ti)O3 at near room temperature by using A(OH)2â \in \$H2O (A = Sr, Ba) and BO2â \in \$nH2O gel (B = Zr, Ti, Zr0.45Ti0.55). Journal of Asian Ceramic Societies, 2021, 9, 124-130.	2.3	1
75	Mapping of Phase Diagram and Electrode Properties in Spinel-type LiNi _{<i>x</i>} Mn _{2-<i>x</i>} Ti _{<i>y</i>} O ₄ Cathodes for Lithium-Ion Batteries. Transactions of the Materials Research Society of Japan, 2020, 45, 211-216.	0.2	1
76	NO x storage properties of hollandite-type K x Ga x Sn8 \hat{a} °x O16. Research on Chemical Intermediates, 2003, 29, 749-753.	2.7	0
77	High-throughput preparation of multinary liquid, thin-film and powder library by combinatorial electrostatic atomization system. Materials Research Society Symposia Proceedings, 2005, 894, 1.	0.1	0
78	Low-Temperature Preparation of Nano-Sized Particles of Some Alkali Titanates by Solution Process. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2009, 56, 225-231.	0.2	0
79	Direct-DME SOFC for Intermediate Operation Temperature Using Proton Conductor as the Electrolyte. ECS Transactions, 2011, 35, 2755-2759.	0.5	0
80	Fine particle preparation and electrode property of layered-type LiNi0.4Co0.6-xTixO2. Materials Research Society Symposia Proceedings, 2012, 1425, 65.	0.1	0
81	Reduction of Contact Resistance between NaxCoO2 Thermoelectric Chip and Ag Electrode by Using Spark Plasma Sintering Method Materials Research Society Symposia Proceedings, 2014, 1642, 1.	0.1	0
82	Correlativity of the nitrogen oxide adsorption mechanism and crystal structure in hollandite-type compounds. Materials for Renewable and Sustainable Energy, 2014, 3, 1.	3.6	0
83	Preparation of Gallium Stannate Dense Sintered Body Using SPS Method. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2016, 63, 986-989.	0.2	0
84	In-situ observation of nitrogen monoxide adsorption on perovskite-type $\langle i\rangle M\langle i\rangle TiO\langle sub\rangle 3\langle sub\rangle (\langle i\rangle M\langle i\rangle = Sr, Ba)$. Journal of the Ceramic Society of Japan, 2016, 124, 579-583.	1,1	0
85	Phase relation and thermoelectric property of Ca1-xBixMn1-yNiyO3 (0 ≠xy ≠0.1). MRS Advances, 2016, 1, 1941-1946.	0.9	O
86	Fabrication and Mechanical Properties of Textured Ti ₃ SiC ₂ Systems Using Commercial Powders. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2017, 64, 552-557.	0.2	0
87	Preparation of NiSi2 and application to thermoelectric silicide elements used as electrodes. MRS Advances, 2018, 3, 1361-1365.	0.9	O
88	Preparation of WO3 nH2O Thin Films at Room Temperature by Solution Process and Their Electrochromic Properties. Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 2009, 60, 268-272.	0.2	0
89	Photocatalytic Amino-Group Modification of Diamond and High Dispersion Composite Technique with Copper Substrate. Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 2021, 72, 701-703.	0.2	O
90	Preparation and electrode property of layered rock-salt type LiNi _{(1â^'} <i>_x</i> _{)/2} Co <sub&g and</sub&g 	gt;(1â^'<	;/sub> <i8< td=""></i8<>

#	Article	lF	CITATIONS
91	(Invited, Digital Presentation) The Challenge of Automated High-Throughput Experiments on a Variety of Powder Libraries. ECS Meeting Abstracts, 2022, MA2022-01, 1069-1069.	0.0	O