Michael Barlage

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5899902/publications.pdf

Version: 2024-02-01

218677 315739 4,113 38 26 38 citations g-index h-index papers 40 40 40 4370 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. Journal of Geophysical Research, 2011, 116, .	3.3	1,626
2	The community Noah land surface model with multiparameterization options (Noah-MP): 2. Evaluation over global river basins. Journal of Geophysical Research, 2011, 116, .	3.3	475
3	High-Resolution Coupled Climate Runoff Simulations of Seasonal Snowfall over Colorado: A Process Study of Current and Warmer Climate. Journal of Climate, 2011, 24, 3015-3048.	3.2	400
4	Noah land surface model modifications to improve snowpack prediction in the Colorado Rocky Mountains. Journal of Geophysical Research, 2010, 115, .	3.3	122
5	The effect of groundwater interaction in North American regional climate simulations with WRF/Noah-MP. Climatic Change, 2015, 129, 485-498.	3.6	114
6	Development and evaluation of a mosaic approach in the WRFâ€Noah framework. Journal of Geophysical Research D: Atmospheres, 2013, 118, 11,918.	3.3	106
7	Urban meteorological modeling using <scp>WRF</scp> : a sensitivity study. International Journal of Climatology, 2017, 37, 1885-1900.	3.5	97
8	Modeling seasonal snowpack evolution in the complex terrain and forested Colorado Headwaters region: A model intercomparison study. Journal of Geophysical Research D: Atmospheres, 2014, 119, 13,795.	3.3	95
9	Black carbon-induced snow albedo reduction over the Tibetan Plateau: uncertainties from snow grain shape and aerosol–snow mixing state based on an updated SNICAR model. Atmospheric Chemistry and Physics, 2018, 18, 11507-11527.	4.9	85
10	Effects of Hydrologic Model Choice and Calibration on the Portrayal of Climate Change Impacts. Journal of Hydrometeorology, 2015, 16, 762-780.	1.9	84
11	Evaluation of the WRFâ€Urban Modeling System Coupled to Noah and Noahâ€MP Land Surface Models Over a Semiarid Urban Environment. Journal of Geophysical Research D: Atmospheres, 2018, 123, 2387-2408.	3.3	68
12	Noahâ€MPâ€Crop: Introducing dynamic crop growth in the Noahâ€MP land surface model. Journal of Geophysical Research D: Atmospheres, 2016, 121, 13,953.	3.3	61
13	Enhancement of land surface information and its impact on atmospheric modeling in the Heihe River Basin, northwest China. Journal of Geophysical Research, 2008, 113, .	3.3	59
14	How can we use MODIS land surface temperature to validate long-term urban model simulations?. Journal of Geophysical Research D: Atmospheres, 2014, 119, 3185-3201.	3.3	57
15	Impact of physics parameterizations on highâ€resolution weather prediction over two Chinese megacities. Journal of Geophysical Research D: Atmospheres, 2016, 121, 4487-4498.	3.3	55
16	Representation of Plant Hydraulics in the Noahâ€MP Land Surface Model: Model Development and Multiscale Evaluation. Journal of Advances in Modeling Earth Systems, 2021, 13, e2020MS002214.	3.8	50
17	Mapping of 30-meter resolution tile-drained croplands using a geospatial modeling approach. Scientific Data, 2020, 7, 257.	5.3	47
18	Impacts of Land Cover and Soil Texture Uncertainty on Land Model Simulations Over the Central Tibetan Plateau. Journal of Advances in Modeling Earth Systems, 2018, 10, 2121-2146.	3.8	41

#	Article	IF	CITATIONS
19	A Wetâ€Bulb Temperatureâ€Based Rainâ€Snow Partitioning Scheme Improves Snowpack Prediction Over the Drier Western United States. Geophysical Research Letters, 2019, 46, 13825-13835.	4.0	39
20	The Importance of Scaleâ€Dependent Groundwater Processes in Landâ€Atmosphere Interactions Over the Central United States. Geophysical Research Letters, 2021, 48, e2020GL092171.	4.0	39
21	Surface energy balance closure at ten sites over the Tibetan plateau. Agricultural and Forest Meteorology, 2018, 259, 317-328.	4.8	34
22	Using WRFâ€Urban to Assess Summertime Air Conditioning Electric Loads and Their Impacts on Urban Weather in Beijing. Journal of Geophysical Research D: Atmospheres, 2018, 123, 2475-2490.	3.3	33
23	Assessment of Uncertainty Sources in Snow Cover Simulation in the Tibetan Plateau. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD032674.	3.3	32
24	Can Convectionâ€Permitting Modeling Provide Decent Precipitation for Offline Highâ€Resolution Snowpack Simulations Over Mountains?. Journal of Geophysical Research D: Atmospheres, 2019, 124, 12631-12654.	3.3	31
25	Enhanced Snow Absorption and Albedo Reduction by Dust‧now Internal Mixing: Modeling and Parameterization. Journal of Advances in Modeling Earth Systems, 2019, 11, 3755-3776.	3.8	28
26	Memory of irrigation effects on hydroclimate and its modeling challenge. Environmental Research Letters, 2018, 13, 064009.	5.2	26
27	Atmosphere-ionosphere coupling from convectively generated gravity waves. Advances in Space Research, 2018, 61, 1931-1941.	2.6	26
28	The incorporation of an organic soil layer in the Noah-MP land surface model and its evaluation over a boreal aspen forest. Atmospheric Chemistry and Physics, 2016, 16, 8375-8387.	4.9	25
29	Lessons Learned From Modeling Irrigation From Field to Regional Scales. Journal of Advances in Modeling Earth Systems, 2019, 11, 2428-2448.	3.8	25
30	Joint Modeling of Crop and Irrigation in the central United States Using the Noahâ€MP Land Surface Model. Journal of Advances in Modeling Earth Systems, 2020, 12, e2020MS002159.	3.8	25
31	Modeling groundwater responses to climate change in the Prairie Pothole Region. Hydrology and Earth System Sciences, 2020, 24, 655-672.	4.9	23
32	Evaluation of convection-permitting WRF CONUS simulation on the relationship between soil moisture and heatwaves. Climate Dynamics, 2020, 55, 235-252.	3.8	17
33	Using Multisource Satellite Data to Assess Recent Snow-Cover Variability and Uncertainty in the Qinghai–Tibet Plateau. Journal of Hydrometeorology, 2019, 20, 1293-1306.	1.9	15
34	Implementing Dynamic Rooting Depth for Improved Simulation of Soil Moisture and Land Surface Feedbacks in Noahâ€MPâ€Crop. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS001786.	3.8	15
35	Improve the Performance of the Noahâ€MPâ€Crop Model by Jointly Assimilating Soil Moisture and Vegetation Phenology Data. Journal of Advances in Modeling Earth Systems, 2021, 13, e2020MS002394.	3.8	15
36	Using 4-km WRF CONUS simulations to assess impacts of the surface coupling strength on regional climate simulation. Climate Dynamics, 2019, 53, 6397-6416.	3.8	12

#	Article	IF	CITATIONS
37	Modeling the Hydrologic Influence of Subsurface Tile Drainage Using the National Water Model. Water Resources Research, 2022, 58, .	4.2	9
38	The Influence of Fire-Induced Surface Changes on the Diurnal Temperature Changes over the Hayman Fire Scar. Journal of Applied Meteorology and Climatology, 2017, 56, 45-67.	1.5	2