Ying Ian Chen

List of Publications by Citations

Source: https://exaly.com/author-pdf/5899724/ying-ian-chen-publications-by-citations.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 324
 22,367
 70
 141

 papers
 h-index
 g-index

 341
 25,211
 7
 7.16

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
324	Hydrogen evolution by a metal-free electrocatalyst. <i>Nature Communications</i> , 2014 , 5, 3783	17.4	1572
323	High oxygen-reduction activity and durability of nitrogen-doped graphene. <i>Energy and Environmental Science</i> , 2011 , 4, 760	35.4	1073
322	Molecule-Level g-CN Coordinated Transition Metals as a New Class of Electrocatalysts for Oxygen Electrode Reactions. <i>Journal of the American Chemical Society</i> , 2017 , 139, 3336-3339	16.4	816
321	Toward design of synergistically active carbon-based catalysts for electrocatalytic hydrogen evolution. <i>ACS Nano</i> , 2014 , 8, 5290-6	16.7	802
320	Porous boron nitride nanosheets for effective water cleaning. <i>Nature Communications</i> , 2013 , 4, 1777	17.4	708
319	Boron nitride nanotubes: Pronounced resistance to oxidation. <i>Applied Physics Letters</i> , 2004 , 84, 2430-24	13,24	678
318	High Electrocatalytic Hydrogen Evolution Activity of an Anomalous Ruthenium Catalyst. <i>Journal of the American Chemical Society</i> , 2016 , 138, 16174-16181	16.4	586
317	Strong oxidation resistance of atomically thin boron nitride nanosheets. ACS Nano, 2014, 8, 1457-62	16.7	490
316	Boron nitride colloidal solutions, ultralight aerogels and freestanding membranes through one-step exfoliation and functionalization. <i>Nature Communications</i> , 2015 , 6, 8849	17.4	486
315	Observation of active sites for oxygen reduction reaction on nitrogen-doped multilayer graphene. <i>ACS Nano</i> , 2014 , 8, 6856-62	16.7	445
314	Ball-milling-induced amorphization in NixZry compounds: A parametric study. <i>Physical Review B</i> , 1993 , 48, 14-21	3.3	382
313	Mechanical properties of atomically thin boron nitride and the role of interlayer interactions. <i>Nature Communications</i> , 2017 , 8, 15815	17.4	371
312	Mechanical property and structure of covalent functionalised graphene/epoxy nanocomposites. <i>Scientific Reports</i> , 2014 , 4, 4375	4.9	352
311	Tin-based composite anodes for potassium-ion batteries. <i>Chemical Communications</i> , 2016 , 52, 9279-82	5.8	308
310	Atomically Thin Boron Nitride: Unique Properties and Applications. <i>Advanced Functional Materials</i> , 2016 , 26, 2594-2608	15.6	306
309	Large-scale mechanical peeling of boron nitride nanosheets by low-energy ball milling. <i>Journal of Materials Chemistry</i> , 2011 , 21, 11862		301
308	Potassium-Ion Battery Anode Materials Operating through the Alloying Dealloying Reaction Mechanism. <i>Advanced Functional Materials</i> , 2018 , 28, 1703857	15.6	252

(2017-2013)

307	Charge-controlled switchable CO2 capture on boron nitride nanomaterials. <i>Journal of the American Chemical Society</i> , 2013 , 135, 8246-53	16.4	239	
306	Synthesis of boron nitride nanotubes at low temperatures using reactive ball milling. <i>Chemical Physics Letters</i> , 1999 , 299, 260-264	2.5	236	
305	Phosphorus Parbon nanocomposite anodes for lithium-ion and sodium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 5572-5584	13	210	
304	High capacity potassium-ion battery anodes based on black phosphorus. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 23506-23512	13	191	
303	A solid-state process for formation of boron nitride nanotubes. <i>Applied Physics Letters</i> , 1999 , 74, 2960-2	2362	190	
302	Oxygen-doped boron nitride nanosheets with excellent performance in hydrogen storage. <i>Nano Energy</i> , 2014 , 6, 219-224	17.1	170	
301	Nanocrystalline SnS coated onto reduced graphene oxide: demonstrating the feasibility of a non-graphitic anode with sulfide chemistry for potassium-ion batteries. <i>Chemical Communications</i> , 2017 , 53, 8272-8275	5.8	164	
300	Sulfur-doped porous reduced graphene oxide hollow nanosphere frameworks as metal-free electrocatalysts for oxygen reduction reaction and as supercapacitor electrode materials. <i>Nanoscale</i> , 2014 , 6, 13740-7	7.7	159	
299	Dots versus antidots: computational exploration of structure, magnetism, and half-metallicity in boron-nitride nanostructures. <i>Journal of the American Chemical Society</i> , 2009 , 131, 17354-9	16.4	158	
298	Functionalized Boron Nitride Nanosheets/Graphene Interlayer for Fast and Long-Life LithiumBulfur Batteries. <i>Advanced Energy Materials</i> , 2017 , 7, 1602380	21.8	155	
297	Anode Improvement in Rechargeable Lithium-Sulfur Batteries. <i>Advanced Materials</i> , 2017 , 29, 1700542	24	154	
296	Dumbbell-Shaped Bi-component Mesoporous Janus Solid Nanoparticles for Biphasic Interface Catalysis. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 8459-8463	16.4	152	
295	BN Nanosheet/Polymer Films with Highly Anisotropic Thermal Conductivity for Thermal Management Applications. <i>ACS Applied Materials & amp; Interfaces</i> , 2017 , 9, 43163-43170	9.5	145	
294	High thermal conductivity of high-quality monolayer boron nitride and its thermal expansion. <i>Science Advances</i> , 2019 , 5, eaav0129	14.3	143	
293	K-ion and Na-ion storage performances of CoO-FeO nanoparticle-decorated super P carbon black prepared by a ball milling process. <i>Nanoscale</i> , 2017 , 9, 3646-3654	7.7	139	
292	Nanopatterning and Electrical Tuning of MoS2 Layers with a Subnanometer Helium Ion Beam. <i>Nano Letters</i> , 2015 , 15, 5307-13	11.5	138	
291	Lithium-ion capacitors with 2D Nb2CTx (MXene) Itarbon nanotube electrodes. <i>Journal of Power Sources</i> , 2016 , 326, 686-694	8.9	138	
290	Porous Boron Carbon Nitride Nanosheets as Efficient Metal-Free Catalysts for the Oxygen Reduction Reaction in Both Alkaline and Acidic Solutions. <i>ACS Energy Letters</i> , 2017 , 2, 306-312	20.1	134	

289	Structure and Capacitive Properties of Porous Nanocrystalline VN Prepared by Temperature-Programmed Ammonia Reduction of V2O5. <i>Chemistry of Materials</i> , 2010 , 22, 914-921	9.6	134
288	Nanoporous carbon produced by ball milling. <i>Applied Physics Letters</i> , 1999 , 74, 2782-2784	3.4	134
287	Electrochemical investigation of sodium reactivity with nanostructured Co3O4 for sodium-ion batteries. <i>Chemical Communications</i> , 2014 , 50, 5057-60	5.8	133
286	High and Stable Ionic Conductivity in 2D Nanofluidic Ion Channels between Boron Nitride Layers. Journal of the American Chemical Society, 2017 , 139, 6314-6320	16.4	127
285	Disorder in ball-milled graphite revealed by Raman spectroscopy. <i>Carbon</i> , 2013 , 57, 515-519	10.4	124
284	MoO3 nanoparticles dispersed uniformly in carbon matrix: a high capacity composite anode for Li-ion batteries. <i>Journal of Materials Chemistry</i> , 2011 , 21, 9350		120
283	Sulfur-Impregnated, Sandwich-Type, Hybrid Carbon Nanosheets with Hierarchical Porous Structure for High-Performance Lithium-Sulfur Batteries. <i>Advanced Energy Materials</i> , 2014 , 4, 1301988	21.8	117
282	Formation of metal hydrides by mechanical alloying. <i>Journal of Alloys and Compounds</i> , 1995 , 217, 181-18	3 4 .7	114
281	Superhydrophobic and Superoleophilic Porous Boron Nitride Nanosheet/Polyvinylidene Fluoride Composite Material for Oil-Polluted Water Cleanup. <i>Advanced Materials Interfaces</i> , 2015 , 2, 1400267	4.6	108
2 80	Dielectric screening in atomically thin boron nitride nanosheets. <i>Nano Letters</i> , 2015 , 15, 218-23	11.5	106
279	A lightweight multifunctional interlayer of sulfurflitrogen dual-doped graphene for ultrafast, long-life lithiumBulfur batteries. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 15343-15352	13	106
278	Raman signature and phonon dispersion of atomically thin boron nitride. <i>Nanoscale</i> , 2017 , 9, 3059-3067	7.7	104
277	Ball milling: a green mechanochemical approach for synthesis of nitrogen doped carbon nanoparticles. <i>Nanoscale</i> , 2013 , 5, 7970-6	7.7	104
276	Nanoflake Arrays of Lithiophilic Metal Oxides for the Ultra-Stable Anodes of Lithium-Metal Batteries. <i>Advanced Functional Materials</i> , 2018 , 28, 1803023	15.6	102
275	Porous poly(vinylidene fluoride) membrane with highly hydrophobic surface. <i>Journal of Applied Polymer Science</i> , 2005 , 98, 1358-1363	2.9	101
274	C-BN single-walled nanotubes from hybrid connection of BN/C nanoribbons: prediction by ab initio density functional calculations. <i>Journal of the American Chemical Society</i> , 2009 , 131, 1682-3	16.4	100
273	High-efficient production of boron nitride nanosheets via an optimized ball milling process for lubrication in oil. <i>Scientific Reports</i> , 2014 , 4, 7288	4.9	96
272	Boron Nitride Nanosheets for Metal Protection. <i>Advanced Materials Interfaces</i> , 2014 , 1, 1300132	4.6	95

(2019-2013)

Large scale boron carbon nitride nanosheets with enhanced lithium storage capabilities. <i>Chemical Communications</i> , 2013 , 49, 352-4	5.8	94
Highly Crumpled Boron Nitride Nanosheets as Adsorbents: Scalable Solvent-Less Production. <i>Advanced Materials Interfaces</i> , 2015 , 2, 1400529	4.6	92
Superhydrophobic and Superoleophilic Boron Nitride Nanotube-Coated Stainless Steel Meshes for Oil and Water Separation. <i>Advanced Materials Interfaces</i> , 2014 , 1, 1300002	4.6	91
Superhydrophobic properties of nonaligned boron nitride nanotube films. <i>Langmuir</i> , 2010 , 26, 5135-40	4	88
Ultra-micro-indentation of silicon and compound semiconductors with spherical indenters. <i>Journal of Materials Research</i> , 1999 , 14, 2338-2343	2.5	88
Large-quantity production of high-yield boron nitride nanotubes. <i>Journal of Materials Research</i> , 2002 , 17, 1896-1899	2.5	84
First principle studies of zigzag AlN nanoribbon. Chemical Physics Letters, 2009, 469, 183-185	2.5	83
Multifunctional Polymer/Porous Boron Nitride Nanosheet Membranes for Superior Trapping Emulsified Oils and Organic Molecules. <i>Advanced Materials Interfaces</i> , 2015 , 2, 1500228	4.6	82
Template-free synthesis of functional 3D BN architecture for removal of dyes from water. <i>Scientific Reports</i> , 2014 , 4, 4453	4.9	81
Magnetism of C adatoms on BN nanostructures: implications for functional nanodevices. <i>Journal of the American Chemical Society</i> , 2009 , 131, 1796-801	16.4	78
Boron Nitride Nanotubes: A Novel Vector for Targeted Magnetic Drug Delivery. <i>Current Nanoscience</i> , 2009 , 5, 33-38	1.4	77
Stable anode performance of an SbBarbon nanocomposite in lithium-ion batteries and the effect of ball milling mode in the course of its preparation. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 4282	13	75
Photoluminescence of boron nitride nanosheets exfoliated by ball milling. <i>Applied Physics Letters</i> , 2012 , 100, 261108	3.4	73
In-situ and tunable nitrogen-doping of MoS2 nanosheets. <i>Scientific Reports</i> , 2014 , 4, 7582	4.9	72
MoO3 nanoparticles distributed uniformly in carbon matrix for supercapacitor applications. <i>Materials Letters</i> , 2012 , 66, 102-105	3.3	72
Self-assembly of core-satellite gold nanoparticles for colorimetric detection of copper ions. <i>Analytica Chimica Acta</i> , 2013 , 803, 128-34	6.6	71
Decoration of nitrogen vacancies by oxygen atoms in boron nitride nanotubes. <i>Physical Chemistry Chemical Physics</i> , 2010 , 12, 15349-53	3.6	71
Highly Compressive Boron Nitride Nanotube Aerogels Reinforced with Reduced Graphene Oxide. <i>ACS Nano</i> , 2019 , 13, 7402-7409	16.7	70
	Highly Crumpled Boron Nitride Nanosheets as Adsorbents: Scalable Solvent-Less Production. Advanced Materials Interfaces, 2015, 2, 1400529 Superhydrophobic and Superoleophilic Boron Nitride Nanotube-Coated Stainless Steel Meshes for Oil and Water Separation. Advanced Materials Interfaces, 2014, 1, 1300002 Superhydrophobic properties of nonaligned boron nitride nanotube films. Langmuir, 2010, 26, 5135-40 Ultra-micro-indentation of silicon and compound semiconductors with spherical indenters. Journal of Materials Research, 1999, 14, 2338-2343 Large-quantity production of high-yield boron nitride nanotubes. Journal of Materials Research, 2002, 17, 1896-1899 First principle studies of zigzag AlN nanoribbon. Chemical Physics Letters, 2009, 469, 183-185 Multifunctional Polymer/Porous Boron Nitride Nanosheet Membranes for Superior Trapping Emulsified Oils and Organic Molecules. Advanced Materials Interfaces, 2015, 2, 1500228 Template-free synthesis of functional 3D BN architecture for removal of dyes from water. Scientific Reports, 2014, 4, 4453 Magnetism of C adatoms on BN nanostructures: implications for functional nanodevices. Journal of the American Chemical Society, 2009, 131, 1796-801 Boron Nitride Nanotubes: A Novel Vector for Targeted Magnetic Drug Delivery. Current Nanoscience, 2009, 5, 33-38 Stable anode performance of an Sblarbon nanocomposite in lithium-ion batteries and the effect of ball milling mode in the course of its preparation. Journal of Materials Chemistry A, 2014, 2, 4282 Photoluminescence of boron nitride nanosheets exfoliated by ball milling. Applied Physics Letters, 2012, 100, 261108 In-situ and tunable nitrogen-doping of MoS2 nanosheets. Scientific Reports, 2014, 4, 7582 MoO3 nanoparticles distributed uniformly in carbon matrix for supercapacitor applications. Materials Letters, 2012, 66, 102-105 Self-assembly of core-satellite gold nanoparticles for colorimetric detection of copper ions. Analytica Chimica Acta, 2013, 803, 128-34 Decoration of nitrogen vacancies by oxygen atom	Highly Crumpled Boron Nitride Nanosheets as Adsorbents: Scalable Solvent-Less Production. Advanced Materials Interfaces, 2015, 2, 1400529 Superhydrophobic and Superoleophilic Boron Nitride Nanotube-Coated Stainless Steel Meshes for Oil and Water Separation. Advanced Materials Interfaces, 2014, 1, 1300002 Superhydrophobic properties of nonaligned boron nitride nanotube films. Langmulr, 2010, 26, 5135-40 Ultra-micro-indentation of silicon and compound semiconductors with spherical indenters. Journal of Materials Research, 1999, 14, 2338-2343 Large-quantity production of high-yield boron nitride nanotubes. Journal of Materials Research, 2002, 17, 1896-1899 First principle studies of zigzag AlN nanoribbon. Chemical Physics Letters, 2009, 469, 183-185 2.5 Multifunctional Polymer/Porous Boron Nitride Nanosheet Membranes for Superior Trapping Emulsified Oils and Organic Molecules. Advanced Materials Interfaces, 2015, 2, 1500228 Template-free synthesis of functional 3D BN architecture for removal of dyes from water. Scientific Reports, 2014, 4, 4453 Magnetism of C adatoms on BN nanostructures: implications for functional nanodevices. Journal of the American Chemical Society, 2009, 131, 1796-801 Boron Nitride Nanotubes: A Novel Vector for Targeted Magnetic Drug Delivery. Current Nanoscience, 2009, 5, 33-38 Stable anode performance of an SbBarbon nanocomposite in lithium-ion batteries and the effect of ball milling mode in the course of its preparation. Journal of Materials Chemistry A, 2014, 2, 4282 Photoluminescence of boron nitride nanosheets exfoliated by ball milling. Applied Physics Letters, 2012, 100, 261108 In-situ and tunable nitrogen-doping of MoS2 nanosheets. Scientific Reports, 2014, 4, 7582 4.9 Photoluminescence of boron nitride nanosheets exfoliated by ball milling. Applied Physics Letters, 2012, 66, 102-105 Self-assembly of core-satellite gold nanoparticles for colorimetric detection of copper ions. Analytica Chimica Acta, 2013, 803, 128-34 Decoration of nitrogen vacancies by oxygen atoms

253	A vein-like nanoporous network of Nb2O5 with a higher lithium intercalation discharge cut-off voltage. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 11019	13	70
252	Improving thermal conductivity of polymer composites by reducing interfacial thermal resistance between boron nitride nanotubes. <i>Composites Science and Technology</i> , 2018 , 165, 322-330	8.6	69
251	In Situ Formation of BN Nanotubes during Nitriding Reactions. <i>Chemistry of Materials</i> , 2005 , 17, 5172-57	1366	68
250	First-principles investigation of L10-disorder phase equilibria of FeNi, Pd, and Pt binary alloy systems. <i>Journal of Alloys and Compounds</i> , 2004 , 383, 23-31	5.7	68
249	Porous BN/TiO2 hybrid nanosheets as highly efficient visible-light-driven photocatalysts. <i>Applied Catalysis B: Environmental</i> , 2017 , 207, 72-78	21.8	67
248	High-performance lithium ion batteries using SiO 2 -coated LiNi 0.5 Co 0.2 Mn 0.3 O 2 microspheres as cathodes. <i>Journal of Alloys and Compounds</i> , 2017 , 709, 708-716	5.7	67
247	Single layer lead iodide: computational exploration of structural, electronic and optical properties, strain induced band modulation and the role of spin-orbital-coupling. <i>Nanoscale</i> , 2015 , 7, 15168-74	7.7	67
246	Dispersion of boron nitride nanotubes in aqueous solution with the help of ionic surfactants. <i>Solid State Communications</i> , 2009 , 149, 763-766	1.6	67
245	Flower stamen-like porous boron carbon nitride nanoscrolls for water cleaning. <i>Nanoscale</i> , 2017 , 9, 978	7 7 97791	66
244	Eu-doped Boron Nitride Nanotubes as a Nanometer-Sized Visible-Light Source. <i>Advanced Materials</i> , 2007 , 19, 1845-1848	24	66
243	Subnanometer Molybdenum Sulfide on Carbon Nanotubes as a Highly Active and Stable Electrocatalyst for Hydrogen Evolution Reaction. <i>ACS Applied Materials & District Active and Stable S</i>	50 5	65
242	Demonstration of the advantages of using bamboo-like nanotubes for electrochemical biosensor applications compared with single walled carbon nanotubes. <i>Electrochemistry Communications</i> , 2005 , 7, 1457-1462	5.1	65
241	Biocompatibility of boron nitride nanosheets. <i>Nano Research</i> , 2018 , 11, 334-342	10	64
240	Controlling Wettability of Boron Nitride Nanotube Films and Improved Cell Proliferation. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 18334-18339	3.8	62
239	Controlled surface modification of boron nitride nanotubes. <i>Nanotechnology</i> , 2011 , 22, 245301	3.4	62
238	A model for the growth of bamboo and skeletal nanotubes: catalytic capillarity. <i>Journal of Crystal Growth</i> , 2002 , 240, 164-169	1.6	62
237	Ex situ electrochemical sodiation/desodiation observation of CoDDanchored carbon nanotubes: a high performance sodium-ion battery anode produced by pulsed plasma in a liquid. <i>Nanoscale</i> , 2015 , 7, 13088-95	7.7	61
236	Superior adsorption of pharmaceutical molecules by highly porous BN nanosheets. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 84-8	3.6	58

235	Enhanced lithium storage in ZnFe2O4© nanocomposite produced by a low-energy ball milling. Journal of Power Sources, 2015 , 282, 462-470	8.9	58
234	Large-scale synthesis of hexagonal corundum-type In2O3 by ball milling with enhanced lithium storage capabilities. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 5274	13	58
233	Nanotube growth by surface diffusion. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 1999 , 263, 401-405	2.3	58
232	Boron Nitride Nanosheets Improve Sensitivity and Reusability of Surface-Enhanced Raman Spectroscopy. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 8405-9	16.4	58
231	Formation of hollow MoS2/carbon microspheres for high capacity and high rate reversible alkali-ion storage. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 8280-8288	13	56
230	Boron nitride nanotubes reinforced aluminum composites prepared by spark plasma sintering: Microstructure, mechanical properties and deformation behavior. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2013 , 574, 149-156	5.3	56
229	Influence of milling temperature and atmosphere on the synthesis of iron nitrides by ball milling. <i>Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 1996 , 206, 24-29	5.3	56
228	Size and Composition Effects in Sb-Carbon Nanocomposites for Sodium-Ion Batteries. <i>ACS Applied Materials & Materi</i>	9.5	54
227	Synthesis of boron nitride nanotubes by boron ink annealing. <i>Nanotechnology</i> , 2010 , 21, 105601	3.4	54
226	Boron nitride nanotube films grown from boron ink painting. Journal of Materials Chemistry, 2010,		5 2
	20, 9679		53
225	A Review of Advanced Flexible Lithium-Ion Batteries. <i>Advanced Materials Technologies</i> , 2018 , 3, 170037.	5 6.8	50
225		5 6.8	
	A Review of Advanced Flexible Lithium-Ion Batteries. <i>Advanced Materials Technologies</i> , 2018 , 3, 170037. Enhanced electrochemical performance of ZrO2 modified LiNi0.6Co0.2Mn0.2O2 cathode material		50
224	A Review of Advanced Flexible Lithium-Ion Batteries. <i>Advanced Materials Technologies</i> , 2018 , 3, 170037. Enhanced electrochemical performance of ZrO2 modified LiNi0.6Co0.2Mn0.2O2 cathode material for lithium ion batteries. <i>Ceramics International</i> , 2017 , 43, 15173-15178 Enhanced lithium storage in Fe2O3-SnO2-C nanocomposite anode with a breathable structure.	5.1	50
224	A Review of Advanced Flexible Lithium-Ion Batteries. <i>Advanced Materials Technologies</i> , 2018 , 3, 170037. Enhanced electrochemical performance of ZrO2 modified LiNi0.6Co0.2Mn0.2O2 cathode material for lithium ion batteries. <i>Ceramics International</i> , 2017 , 43, 15173-15178 Enhanced lithium storage in Fe2O3-SnO2-C nanocomposite anode with a breathable structure. <i>Nanoscale</i> , 2013 , 5, 4910-6 All-solid-state high-energy planar asymmetric supercapacitors based on all-in-one monolithic film	5.1 7.7	50 50 50
224 223	A Review of Advanced Flexible Lithium-Ion Batteries. <i>Advanced Materials Technologies</i> , 2018 , 3, 170037. Enhanced electrochemical performance of ZrO2 modified LiNio.6Coo.2Mno.2O2 cathode material for lithium ion batteries. <i>Ceramics International</i> , 2017 , 43, 15173-15178 Enhanced lithium storage in Fe2O3-SnO2-C nanocomposite anode with a breathable structure. <i>Nanoscale</i> , 2013 , 5, 4910-6 All-solid-state high-energy planar asymmetric supercapacitors based on all-in-one monolithic film using boron nitride nanosheets as separator. <i>Energy Storage Materials</i> , 2018 , 10, 24-31 Fluorination-induced magnetism in boron nitride nanotubes from ab initio calculations. <i>Applied</i>	5.1 7·7 19.4	50 50 50
224 223 222 221	A Review of Advanced Flexible Lithium-Ion Batteries. <i>Advanced Materials Technologies</i> , 2018 , 3, 170037. Enhanced electrochemical performance of ZrO2 modified LiNi0.6Co0.2Mn0.2O2 cathode material for lithium ion batteries. <i>Ceramics International</i> , 2017 , 43, 15173-15178 Enhanced lithium storage in Fe2O3-SnO2-C nanocomposite anode with a breathable structure. <i>Nanoscale</i> , 2013 , 5, 4910-6 All-solid-state high-energy planar asymmetric supercapacitors based on all-in-one monolithic film using boron nitride nanosheets as separator. <i>Energy Storage Materials</i> , 2018 , 10, 24-31 Fluorination-induced magnetism in boron nitride nanotubes from ab initio calculations. <i>Applied Physics Letters</i> , 2008 , 92, 102515 Boron nitride nanosheets as improved and reusable substrates for gold nanoparticles enabled	5.1 7.7 19.4 3.4	50 50 50 50 48

217	A Novel Approach for Real Mass Transformation from V2O5 Particles to Nanorods. <i>Crystal Growth and Design</i> , 2008 , 8, 3661-3665	3.5	47
216	Purification of boron nitride nanotubes. <i>Chemical Physics Letters</i> , 2006 , 425, 315-319	2.5	47
215	Advanced N-doped mesoporous molybdenum disulfide nanosheets and the enhanced lithium-ion storage performance. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 1440-1445	13	46
214	Bulk Hexagonal Boron Nitride with a Quasi-Isotropic Thermal Conductivity. <i>Advanced Functional Materials</i> , 2018 , 28, 1707556	15.6	45
213	Isotopically Enriched 10BN Nanotubes. <i>Advanced Materials</i> , 2006 , 18, 2157-2160	24	45
212	Carbon nanotubes formed in graphite after mechanical grinding and thermal annealing. <i>Applied Physics A: Materials Science and Processing</i> , 2003 , 76, 633-636	2.6	45
211	The nucleation and growth of carbon nanotubes in a mechano-thermal process. <i>Carbon</i> , 2004 , 42, 1543-	1548	44
210	Maricite NaFePO4/C/graphene: a novel hybrid cathode for sodium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 16616-16621	13	43
209	Light emission and excitonic effect of boron nitride nanotubes observed by photoluminescent spectra. <i>Optical Materials</i> , 2007 , 29, 1295-1298	3.3	43
208	Antimony-carbon nanocomposites for potassium-ion batteries: Insight into the failure mechanism in electrodes and possible avenues to improve cyclic stability. <i>Journal of Power Sources</i> , 2019 , 413, 476-	484 484	43
207	Mechanically activated catalyst mixing for high-yield boron nitride nanotube growth. <i>Nanoscale Research Letters</i> , 2012 , 7, 417	5	42
206	Ilmenite FeTiO3 Nanoflowers and Their Pseudocapacitance. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 17297-17302	3.8	42
205	Amine-Functionalized Boron Nitride Nanosheets: A New Functional Additive for Robust, Flexible Ion Gel Electrolyte with High Lithium-Ion Transference Number. <i>Advanced Functional Materials</i> , 2020 , 30, 1910813	15.6	41
204	Boron Nitride Nanosheet-Veiled Gold Nanoparticles for Surface-Enhanced Raman Scattering. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 15630-6	9.5	41
203	Tuning active sites on cobalt/nitrogen doped graphene for electrocatalytic hydrogen and oxygen evolution. <i>Electrochimica Acta</i> , 2018 , 265, 497-506	6.7	40
202	Single deep ultraviolet light emission from boron nitride nanotube film. <i>Applied Physics Letters</i> , 2010 , 97, 141104	3.4	40
201	Over 1.0mm-long boron nitride nanotubes. <i>Chemical Physics Letters</i> , 2008 , 463, 130-133	2.5	40
200	First-principles study for ordering and phase separation in the Fe-Pd system. <i>Journal of Physics Condensed Matter</i> , 2002 , 14, 1903-1913	1.8	40

(2015-2020)

Two-Dimensional Nanomaterials for Anticorrosive Polymeric Coatings: A Review. <i>Industrial & Engineering Chemistry Research</i> , 2020 , 59, 15424-15446	3.9	40
Molecule-Induced Conformational Change in Boron Nitride Nanosheets with Enhanced Surface Adsorption. <i>Advanced Functional Materials</i> , 2016 , 26, 8202-8210	15.6	39
Gas Protection of Two-Dimensional Nanomaterials from High-Energy Impacts. <i>Scientific Reports</i> , 2016 , 6, 35532	4.9	39
Highly efficient oxygen evolution from CoS/CNT nanocomposites via a one-step electrochemical deposition and dissolution method. <i>Nanoscale</i> , 2017 , 9, 6886-6894	7.7	38
High temperature and high rate lithium-ion batteries with boron nitride nanotubes coated polypropylene separators. <i>Energy Storage Materials</i> , 2019 , 19, 352-359	19.4	38
Nanofluidic electric generators constructed from boron nitride nanosheet membranes. <i>Nano Energy</i> , 2018 , 47, 368-373	17.1	38
Boron nitride nanotube reinforced polyurethane composites. <i>Progress in Natural Science: Materials International</i> , 2013 , 23, 170-173	3.6	38
Insight into reactions and interface between boron nitride nanotube and aluminum. <i>Journal of Materials Research</i> , 2012 , 27, 2760-2770	2.5	37
Electrochemical capacitance of mesoporous tungsten oxynitride in aqueous electrolytes. <i>Journal of Power Sources</i> , 2012 , 220, 298-305	8.9	36
Pure boron nitride nanowires produced from boron triiodide. <i>Nanotechnology</i> , 2006 , 17, 786-789	3.4	36
High N-content holey few-layered graphene electrocatalysts: scalable solvent-less production. Journal of Materials Chemistry A, 2015 , 3, 1682-1687	13	35
Growth of V2O5 nanorods from ball-milled powders and their performance in cathodes and anodes of lithium-ion batteries. <i>Journal of Solid State Electrochemistry</i> , 2010 , 14, 1841-1846	2.6	35
One-dimensional nanomaterials synthesized using high-energy ball milling and annealing process. <i>Science and Technology of Advanced Materials</i> , 2006 , 7, 839-846	7.1	35
Efficient production of ZnO nanowires by a ball milling and annealing method. <i>Nanotechnology</i> , 2007 , 18, 175604	3.4	35
Reactive ball milling to produce nanocrystalline ZnO. <i>Materials Letters</i> , 2008 , 62, 4047-4049	3.3	34
Synthesis of boron nitride nanotubes, bamboos and nanowires. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2008 , 40, 2513-2516	3	34
Conical Boron Nitride Nanorods Synthesized Via the Ball-Milling and Annealing Method. <i>Journal of the American Ceramic Society</i> , 2006 , 89, 675-679	3.8	34
Understanding Structure-Function Relationship in Hybrid Co3O4-Fe2O3/C Lithium-Ion Battery Electrodes. <i>ACS Applied Materials & Acs Applied & A</i>	9.5	33
	Engineering Chemistry Research, 2020, 59, 15424-15446 Molecule-Induced Conformational Change in Boron Nitride Nanosheets with Enhanced Surface Adsorption. Advanced Functional Materials, 2016, 26, 8202-8210 Gas Protection of Two-Dimensional Nanomaterials from High-Energy Impacts. Scientific Reports, 2016, 6, 35532 Highly efficient oxygen evolution from CoS/CNT nanocomposites via a one-step electrochemical deposition and dissolution method. Nanoscale, 2017, 9, 6886-6894 High temperature and high rate lithium-ion batteries with boron nitride nanotubes coated polypropylene separators. Energy Storage Materials, 2019, 19, 352-359 Nanofluidic electric generators constructed from boron nitride nanosheet membranes. Nano Energy, 2018, 47, 368-373 Boron nitride nanotube reinforced polyurethane composites. Progress in Natural Science: Materials International, 2013, 23, 170-173 Insight into reactions and interface between boron nitride nanotube and aluminum. Journal of Materials Research, 2012, 27, 2760-2770 Electrochemical capacitance of mesoporous tungsten oxynitride in aqueous electrolytes. Journal of Power Sources, 2012, 220, 298-305 Pure boron nitride nanowires produced from boron triiodide. Nanotechnology, 2006, 17, 786-789 High N-content holey few-layered graphene electrocatalysts: scalable solvent-less production. Journal of Materials Chemistry, A, 2015, 3, 1682-1687 Growth of V2O5 nanorods from ball-milled powders and their performance in cathodes and anodes of lithium-ion batteries. Journal of Solid State Electrochemistry, 2010, 14, 1841-1846 One-dimensional nanomaterials synthesized using high-energy ball milling and annealing process. Science and Technology of Advanced Materials, 2006, 7, 839-846 Efficient production of ZnO nanowires by a ball milling and annealing method. Nanotechnology, 2007, 18, 175604 Reactive ball milling to produce nanocrystalline ZnO. Materials Letters, 2008, 62, 4047-4049 Synthesis of boron nitride Nanorods Synthesized Via the Ball-Milling and Annealing Method. Journal of	Engineering Chemistry Research, 2020, 59, 15424-15446 Molecule-Induced Conformational Change in Boron Nitride Nanosheets with Enhanced Surface Adsorption. Advanced Functional Materials, 2016, 26, 8202-8210 Gas Protection of Two-Dimensional Nanomaterials from High-Energy Impacts. Scientific Reports, 2016, 6, 33532 Highly efficient oxygen evolution from CoS/CNT nanocomposites via a one-step electrochemical deposition and dissolution method. Nanoscale, 2017, 9, 6886-6894 High temperature and high rate lithium-ion batteries with boron nitride nanotubes coated polypropylene separators. Energy Storage Materials, 2019, 19, 352-359 Nanofluidic electric generators constructed from boron nitride nanosheet membranes. Nano Energy, 2018, 47, 368-373 Boron nitride nanotube reinforced polyurethane composites. Progress in Natural Science: Materials International, 2013, 23, 170-173 Insight into reactions and interface between boron nitride nanotube and aluminum. Journal of Naterials Research, 2012, 27, 2760-2770 Electrochemical capacitance of mesoporous tungsten oxynitride in aqueous electrolytes. Journal of Power Sources, 2012, 220, 298-305 Pure boron nitride nanowires produced from boron triiodide. Nanotechnology, 2006, 17, 786-789 44 High N-content holey few-layered graphene electrocatalysts: scalable solvent-less production. Journal of Materials Chemistry A, 2015, 3, 1682-1687 Growth of V2O5 nanorods from ball-milled powders and their performance in cathodes and anodes of lithium-ion batteries. Journal of Solid State Electrochemistry, 2010, 14, 1841-1846 One-dimensional nanomaterials synthesized using high-energy ball milling and annealing process. Science and Technology of Advanced Materials, 2006, 7, 839-846 Efficient production of ZnO nanowires by a ball milling and annealing method. Nanotechnology, 2007, 18, 175604 Reactive ball milling to produce nanocrystalline ZnO. Materials Letters, 2008, 62, 4047-4049 3,3 Synthesis of boron nitride nanotubes, bamboos and nanowires. Physica E: Low-Dimensional System

181	Lithium ferrite (Li0.5Fe2.5O4) nanoparticles as anodes for lithium ion batteries. <i>RSC Advances</i> , 2014 , 4, 23145-23148	3.7	33
180	Increased dissolution of ilmenite induced by high-energy ball milling. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 1999 , 271, 485-490	5.3	33
179	Low-temperature oxidation of ilmenite (FeTiO3) induced by high energy ball milling at room temperature. <i>Journal of Alloys and Compounds</i> , 1997 , 257, 156-160	5.7	32
178	Hierarchical Porous YolkBhell Carbon Nanosphere for High-Performance LithiumBulfur Batteries. <i>Particle and Particle Systems Characterization</i> , 2017 , 34, 1600281	3.1	31
177	Formation of defects in boron nitride by low energy ion bombardment. <i>Journal of Applied Physics</i> , 2009 , 106, 083523	2.5	31
176	Half metallicty in finite-length zigzag single walled carbon nanotube: A first-principle prediction. <i>Applied Physics Letters</i> , 2008 , 93, 073101	3.4	31
175	Controlled growth of zinc nanowires. <i>Materials Letters</i> , 2007 , 61, 144-147	3.3	31
174	Nanotube growth during annealing of mechanically milled Boron. <i>Applied Physics A: Materials Science and Processing</i> , 2003 , 76, 107-110	2.6	31
173	Mechanochemistry: A force in disguise and conditional effects towards chemical reactions. <i>Chemical Communications</i> , 2021 , 57, 1080-1092	5.8	31
172	Hydrangea-like multi-scale carbon hollow submicron spheres with hierarchical pores for high performance supercapacitor electrodes. <i>Electrochimica Acta</i> , 2015 , 176, 207-214	6.7	30
171	Porous carbon nanotube/polyvinylidene fluoride composite material: Superhydrophobicity/superoleophilicity and tunability of electrical conductivity. <i>Polymer</i> , 2014 , 55, 56	16 ² 5 ⁶ 23	2 ³⁰
170	One-step template-free synthesis of 3D functionalized flower-like boron nitride nanosheets for NH and CO adsorption. <i>Nanoscale</i> , 2018 , 10, 10979-10985	7.7	30
169	Divacancy-assisted transition metal adsorption on the BN graphene and its interaction with hydrogen molecules: a theoretical study. <i>Applied Surface Science</i> , 2013 , 273, 293-301	6.7	29
168	Humidity sensing properties of single Au-decorated boron nitride nanotubes. <i>Electrochemistry Communications</i> , 2013 , 30, 29-33	5.1	29
167	Titanium Dioxide Nanotube Films for Electrochemical Supercapacitors: Biocompatibility and Operation in an Electrolyte Based on a Physiological Fluid. <i>Journal of the Electrochemical Society</i> , 2015 , 162, A5065-A5069	3.9	29
166	Selective Oxidation Synthesis of MnCr2O4 Spinel Nanowires from Commercial Stainless Steel Foil. <i>Crystal Growth and Design</i> , 2007 , 7, 2279-2281	3.5	29
165	Bimetallic molybdenum tungsten oxynitride: structure and electrochemical properties. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 7889	13	28
164	Nano Au-decorated boron nitride nanotubes: Conductance modification and field-emission enhancement. <i>Applied Physics Letters</i> , 2008 , 92, 243105	3.4	28

(1996-2006)

163	An effective approach to grow boron nitride nanowires directly on stainless-steel substrates. <i>Nanotechnology</i> , 2006 , 17, 2942-2946	3.4	28	
162	Impact of size on energy storage performance of graphene based supercapacitor electrode. <i>Electrochimica Acta</i> , 2016 , 219, 463-469	6.7	28	
161	First-Principles Calculation of L10-Disorder Phase Boundary in Fe-Pd System. <i>Materials Transactions</i> , 2004 , 45, 1478-1484	1.3	27	
160	The evolution of hydriding and nitriding reactions during ball milling of titanium in ammonia. <i>Journal of Materials Science Letters</i> , 1995 , 14, 542-544		27	
159	Boron Radicals Identified as the Source of the Unexpected Catalysis by Boron Nitride Nanosheets. <i>ACS Nano</i> , 2019 , 13, 1394-1402	16.7	27	
158	Repelling Polysulfide Ions by Boron Nitride Nanosheet Coated Separators in LithiumBulfur Batteries. <i>ACS Applied Energy Materials</i> , 2019 , 2, 2620-2628	6.1	26	
157	Lithium Germanate (Li GeO): A High-Performance Anode Material for Lithium-Ion Batteries. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 16059-16063	16.4	26	
156	Influence of nitriding gases on the growth of boron nitride nanotubes. <i>Journal of Materials Science</i> , 2007 , 42, 4025-4030	4.3	26	
155	Excellent electrochemical performance of LiFe0.4Mn0.6PO4 microspheres produced using a double carbon coating process. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 18831-18837	13	25	
154	Non-covalent surface modification of boron nitride nanotubes for enhanced catalysis. <i>Chemical Communications</i> , 2014 , 50, 225-7	5.8	25	
153	Synthesis of nanocrystalline transition metal and oxides for lithium storage. <i>Journal of Power Sources</i> , 2005 , 146, 487-491	8.9	25	
152	Self-assembled V2O5 interconnected microspheres produced in a fish-water electrolyte medium as a high-performance lithium-ion-battery cathode. <i>Nano Research</i> , 2015 , 8, 3591-3603	10	24	
151	Electrochemical reactivity of ilmenite FeTiO3, its nanostructures and oxide-carbon nanocomposites with lithium. <i>Electrochimica Acta</i> , 2013 , 108, 127-134	6.7	24	
150	Ball milling induced low-temperature carbothermic reduction of ilmenite. <i>Materials Letters</i> , 1996 , 28, 55-58	3.3	24	
149	Dumbbell-Shaped Bi-component Mesoporous Janus Solid Nanoparticles for Biphasic Interface Catalysis. <i>Angewandte Chemie</i> , 2017 , 129, 8579-8583	3.6	23	
148	Pd embedded in porous carbon (Pd@CMK-3) as an active catalyst for Suzuki reactions: Accelerating mass transfer to enhance the reaction rate. <i>Nano Research</i> , 2014 , 7, 1254-1262	10	23	
147	Narrowed bandgaps and stronger excitonic effects from small boron nitride nanotubes. <i>Chemical Physics Letters</i> , 2009 , 476, 240-243	2.5	23	
146	High-temperature phase transformations of iron anhydrous ammonia system realized by ball milling at room temperature. <i>Journal of Applied Physics</i> , 1996 , 79, 3956	2.5	23	

145	Expanding the applications of the ilmenite mineral to the preparation of nanostructures: TiO2 nanorods and their photocatalytic properties in the degradation of oxalic acid. <i>Chemistry - A European Journal</i> , 2013 , 19, 1091-6	4.8	22
144	Practical Amine Functionalization of Multi-Walled Carbon Nanotubes for Effective Interfacial Bonding. <i>Plasma Processes and Polymers</i> , 2012 , 9, 733-741	3.4	22
143	Different oxidation reactions of ilmenite induced by high energy ball milling. <i>Journal of Alloys and Compounds</i> , 1998 , 266, 150-154	5.7	22
142	Two-in-one solution using insect wings to produce graphene-graphite films for efficient electrocatalysis. <i>Nano Research</i> , 2019 , 12, 33-39	10	22
141	Interfacial reactions between titanium and boron nitride nanotubes. Scripta Materialia, 2017, 127, 108-7	1526	21
140	Inquisition of Microcystis aeruginosa and Synechocystis nanowires: characterization and modelling. <i>Antonie Van Leeuwenhoek</i> , 2015 , 108, 1213-25	2.1	21
139	Nanoporous transition metal oxynitrides as catalysts for the oxygen reduction reaction. <i>Electrochimica Acta</i> , 2013 , 103, 151-160	6.7	21
138	Three-Dimensional Functionalized Boron Nitride Nanosheets/ZnO Superstructures for CO Capture. <i>ACS Applied Materials & Discrete ACS ACS Applied Materials & Discrete ACS ACS Applied Materials & Discrete ACS ACS ACS ACS ACS ACS ACS ACS ACS ACS</i>	9.5	20
137	Synthesis of an indium oxide nanoparticle embedded graphene three-dimensional architecture for enhanced lithium-ion storage. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 18238-18243	13	20
136	Scalable production of wrinkled and few-layered graphene sheets and their use for oil and organic solvent absorption. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 6913-8	3.6	20
135	Effect of warm rolling and annealing on the mechanical properties of aluminum composite reinforced with boron nitride nanotubes. <i>Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing,</i> 2018 , 710, 366-373	5.3	19
134	Synthesis of Composite Nanosheets of Graphene and Boron Nitride and Their Lubrication Application in Oil. <i>Advanced Engineering Materials</i> , 2018 , 20, 1700488	3.5	19
133	Advancement in liquid exfoliation of graphite through simultaneously oxidizing and ultrasonicating. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 20382-20392	13	19
132	Layer-by-Layer Assembly Fabrication of Porous Boron Nitride Coated Multifunctional Materials for Water Cleaning. <i>Advanced Materials Interfaces</i> , 2017 , 4, 1700392	4.6	19
131	Titanium Oxide Nanorods Extracted From Ilmenite Sands. <i>Crystal Growth and Design</i> , 2009 , 9, 1240-1246	43.5	19
130	Production of rutile from ilmenite by room temperature ball-milling-induced sulphurisation reaction. <i>Journal of Alloys and Compounds</i> , 1996 , 245, 54-58	5.7	19
129	Competitive gas-solid reactions realized by ball milling of Zr in ammonia gas. <i>Journal of Materials Research</i> , 1996 , 11, 1500-1506	2.5	19
128	An Ultra-Long-Life Flexible Lithium-Sulfur Battery with Lithium Cloth Anode and Polysulfone-Functionalized Separator. <i>ACS Nano</i> , 2021 , 15, 1358-1369	16.7	19

(2013-2016)

127	Quantitative secondary electron imaging for work function extraction at atomic level and layer identification of graphene. <i>Scientific Reports</i> , 2016 , 6, 21045	4.9	19
126	Efficient photocatalytic reduction of aqueous Cr(VI) over porous BNNSs/TiO2 nanocomposites under visible light irradiation. <i>Catalysis Science and Technology</i> , 2016 , 6, 8309-8313	5.5	18
125	Preparation and evaluation of hydrophobically modified core shell calcium carbonate structure by different capping agents. <i>Powder Technology</i> , 2013 , 235, 581-589	5.2	18
124	Optimization of milling parameters on the synthesis of stearic acid coated CaCO3 nanoparticles 2014 , 11, 273-282		18
123	TiO2 nanoparticles prepared by hydrochloric acid leaching of mechanically activated and carbothermic reduced ilmenite. <i>Transactions of Nonferrous Metals Society of China</i> , 2012 , 22, 1232-1238	3.3	18
122	First-principles calculation of L10 -disorder phase equilibria for FeNi system. <i>Calphad: Computer Coupling of Phase Diagrams and Thermochemistry</i> , 2009 , 33, 244-249	1.9	18
121	Patterned growth and cathodoluminescence of conical boron nitride nanorods. <i>Applied Physics Letters</i> , 2006 , 88, 093117	3.4	18
120	Growth direction control of aligned carbon nanotubes. <i>Carbon</i> , 2005 , 43, 3183-3186	10.4	18
119	Investigation of Nanoporous Carbon Powders Produced by High Energy Ball Milling and Formation of Carbon Nanotubes during Subsequent Annealing. <i>Materials Science Forum</i> , 1999 , 312-314, 375-380	0.4	18
118	Anticorrosive and UV-blocking waterborne polyurethane composite coating containing novel two-dimensional Ti3C2 MXene nanosheets. <i>Journal of Materials Science</i> , 2021 , 56, 4212-4224	4.3	18
117	Bi-Functional Water/Oxygen Electrocatalyst Based on PdO-RuO2Composites. <i>Journal of the Electrochemical Society</i> , 2013 , 160, H74-H79	3.9	17
116	Boron nitride nanotube reinforced titanium metal matrix composites with excellent high-temperature performance. <i>Journal of Materials Research</i> , 2017 , 32, 3744-3752	2.5	17
115	High-Quality Boron Nitride Nanoribbons: Unzipping during Nanotube Synthesis. <i>Angewandte Chemie</i> , 2013 , 125, 4306-4310	3.6	17
114	Porous TiO2 with a controllable bimodal pore size distribution from natural ilmenite. <i>CrystEngComm</i> , 2011 , 13, 1322-1327	3.3	17
113	Improved growth of aligned carbon nanotubes by mechanical activation. <i>Journal of Materials Research</i> , 2004 , 19, 2791-2794	2.5	17
112	Nitriding reactions of Ti?Al system induced by ball milling in ammonia gas. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 1994 , 187, 51-55	5.3	17
111	Carbon coated Na7Fe7(PO4)6F3: A novel intercalation cathode for sodium-ion batteries. <i>Journal of Power Sources</i> , 2014 , 271, 497-503	8.9	16
110	High yield BNNTs synthesis by promotion effect of milling-assisted precursor. <i>Microelectronic Engineering</i> , 2013 , 110, 256-259	2.5	16

109	First-principles calculations of phase equilibria and transformation dynamics of Fe-based alloys. <i>Journal of Phase Equilibria and Diffusion</i> , 2006 , 27, 47-53	1	16
108	Probing electrochemical reactivity in an Sb2S3-containing potassium-ion battery anode: observation of an increased capacity. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 11424-11434	13	16
107	Evolution of the electrochemical capacitance of transition metal oxynitrides with time: the effect of ageing and passivation. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 12940-12951	13	15
106	Synthesis of single-crystal nanoparticles of indium oxide by lirea glasslimethod and their electrochemical properties. <i>Materials Letters</i> , 2013 , 91, 5-8	3.3	15
105	Approaching Reactive KFePO4 Phase for Potassium Storage by Adopting an Advanced Design Strategy. <i>Batteries and Supercaps</i> , 2020 , 3, 450-455	5.6	15
104	Atomically Thin Boron Nitride as an Ideal Spacer for Metal-Enhanced Fluorescence. <i>ACS Nano</i> , 2019 , 13, 12184-12191	16.7	14
103	In situ prepared V2O5/graphene hybrid as a superior cathode material for lithium-ion batteries. <i>RSC Advances</i> , 2016 , 6, 35287-35294	3.7	14
102	Clusters of £iFeO2 nanoparticles incorporated into multi-walled carbon nanotubes: a lithium-ion battery cathode with enhanced lithium storage properties. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 20371-8	3.6	14
101	Electric contributions to magnetic force microscopy response from graphene and MoS2 nanosheets. <i>Journal of Applied Physics</i> , 2014 , 116, 213904	2.5	14
100	Crystal phase engineered quantum wells in ZnO nanowires. <i>Nanotechnology</i> , 2013 , 24, 215202	3.4	14
99	Direct observation of defect levels in hexagonal BN by soft X-ray absorption spectroscopy. <i>Chemical Physics Letters</i> , 2009 , 472, 190-193	2.5	14
98	Boron carbide nanowires with uniform CNxcoatings. <i>New Journal of Physics</i> , 2007 , 9, 13-13	2.9	14
97	Unusual corrugated nanowires of zinc oxide. <i>Journal of Crystal Growth</i> , 2008 , 310, 3139-3143	1.6	14
96	Programmable graphene doping via electron beam irradiation. <i>Nanoscale</i> , 2017 , 9, 8657-8664	7.7	13
95	Nanocavity-in-Multiple Nanogap Plasmonic Coupling Effects from Vertical Sandwich-Like Au@AlO@Au Arrays for Surface-Enhanced Raman Scattering. <i>ACS Applied Materials & amp; Interfaces</i> , 2018 , 10, 8317-8323	9.5	13
94	Fabrication of boron nitride nanotube-gold nanoparticle hybrids using pulsed plasma in liquid. <i>Langmuir</i> , 2014 , 30, 10712-20	4	13
93	Preparation and potential application of boron nitride nanocups. <i>Materials Letters</i> , 2012 , 80, 148-151	3.3	13
92	High-resolution x-ray absorption studies of core excitons in hexagonal boron nitride. <i>Applied Physics Letters</i> , 2012 , 101, 191604	3.4	13

91	Revealing important role of graphitic carbon nitride surface catalytic activity in photocatalytic hydrogen evolution by using different carbon co-catalysts. <i>Applied Surface Science</i> , 2019 , 491, 236-244	6.7	12
90	Nitrogen-doped Graphene Chainmail Wrapped IrCo Alloy Particles on Nitrogen-doped Graphene Nanosheet for Highly Active and Stable Full Water Splitting. <i>ChemCatChem</i> , 2019 , 11, 5457-5465	5.2	12
89	Tree-like SnO2 nanowires and optical properties. <i>Materials Chemistry and Physics</i> , 2011 , 126, 128-132	4.4	12
88	Cathodoluminescence of boron nitride nanotubes doped by ytterbium. <i>Journal of Alloys and Compounds</i> , 2010 , 504, S353-S355	5.7	12
87	Field-emission characteristics of conical boron nitride nanorods. <i>Journal Physics D: Applied Physics</i> , 2007 , 40, 144-147	3	12
86	Documenting capacity and cyclic stability enhancements in synthetic graphite potassium-ion battery anode material modified by low-energy liquid phase ball milling. <i>Journal of Power Sources</i> , 2020 , 476, 228733	8.9	12
85	Boron Nitride Nanosheets Improve Sensitivity and Reusability of Surface-Enhanced Raman Spectroscopy. <i>Angewandte Chemie</i> , 2016 , 128, 8545-8549	3.6	12
84	Preparation of composite electrodes with carbon nanotubes for lithium-ion batteries by low-energy ball milling. <i>RSC Advances</i> , 2014 , 4, 36649-36655	3.7	11
83	Direct observation of defects in hexagonal boron nitride by near-edge X-ray absorption fine structure and X-ray photoemission spectroscopy. <i>Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment,</i> 2010 , 619, 94-97	1.2	11
82	Growth and structure of prismatic boron nitride nanorods. <i>Physical Review B</i> , 2006 , 74,	3.3	11
81	Patterned growth of carbon nanotubes on Si substrates without predeposition of metal catalysts. <i>Applied Physics Letters</i> , 2005 , 87, 033103	3.4	11
80	A Self-Healing Amalgam Interface in Metal Batteries. <i>Advanced Materials</i> , 2020 , 32, e2004798	24	11
79	Formation of the Face-Centered Cubic (FCC)-NdO x Phase at Nd/Nd-Fe-B Interface: A First-Principles Modeling. <i>Jom</i> , 2014 , 66, 1133-1137	2.1	10
78	Large-scale production of h-In2O3/carbon nanocomposites with enhanced lithium storage properties. <i>Electrochimica Acta</i> , 2014 , 135, 128-132	6.7	10
77	Direct synthesis of rutile TiO2 nanorods with improved electrochemical lithium ion storage properties. <i>Materials Letters</i> , 2013 , 98, 112-115	3.3	10
76	Lithium storage in disordered graphitic materials: a semi-quantitative study of the relationship between structure disordering and capacity. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 5084-9	3.6	10
75	One-dimensional growth of TiO2 nanorods from ilmenite sands. <i>Journal of Alloys and Compounds</i> , 2010 , 504, S364-S367	5.7	10
74	Mechanically enhanced carbothermic synthesis of iron-TiN composite. <i>Journal of Materials Science Letters</i> , 1997 , 16, 37-39		10

73	Anomalous evaporation behavior of ZnO powder milled mechanically under high-energy conditions. <i>Materials Letters</i> , 2008 , 62, 715-718	3.3	10
72	Fluoride-assisted synthesis of mullite (Al5.65Si0.35O9.175) nanowires. <i>Chemical Communications</i> , 2006 , 2780-2	5.8	10
71	Challenges and solutions in surface engineering and assembly of boron nitride nanosheets. <i>Materials Today</i> , 2021 , 44, 194-210	21.8	10
70	Two-Dimensional Van der Waals Heterostructures for Synergistically Improved Surface-Enhanced Raman Spectroscopy. <i>ACS Applied Materials & Enhanced</i> 2020, 12, 21985-21991	9.5	10
69	Computational phase diagrams for the Nd-based magnets based on the combined ab initio/CALPHAD approach. <i>Scripta Materialia</i> , 2018 , 154, 305-310	5.6	9
68	Ball milled SnO2: a modified vapor source for growing nanostructures. <i>Journal of Alloys and Compounds</i> , 2010 , 504, S315-S318	5.7	9
67	Rare-earth doped boron nitride nanotubes. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 2008 , 146, 189-192	3.1	9
66	Transmission electron microscopy investigation of substitution reactions from carbon nanotube template to silicon carbide nanowires. <i>New Journal of Physics</i> , 2007 , 9, 137-137	2.9	9
65	Study on topological properties in two-dimensional grain networks via large-scale Monte Carlo simulation. <i>Computational Materials Science</i> , 2015 , 103, 165-169	3.2	8
64	First-principles cluster variation calculations of tetragonal-cubic transition in ZrO2. <i>Journal of Alloys and Compounds</i> , 2013 , 577, S123-S126	5.7	8
63	Rigorous and Accurate Contrast Spectroscopy for Ultimate Thickness Determination of Micrometer-Sized Graphene on Gold and Molecular Sensing. <i>ACS Applied Materials & Description</i> (2018, 10, 22520-22528)	9.5	8
62	Lithium Germanate (Li2GeO3): A High-Performance Anode Material for Lithium-Ion Batteries. <i>Angewandte Chemie</i> , 2016 , 128, 16293-16297	3.6	7
61	Identification and topographical characterisation of microbial nanowires in Nostoc punctiforme. <i>Antonie Van Leeuwenhoek</i> , 2016 , 109, 475-80	2.1	7
60	Replacement reaction induced by ball milling of silica in nitrogen. <i>Scripta Metallurgica Et Materialia</i> , 1995 , 32, 19-22		7
59	In situ doping and synthesis of two-dimensional nanomaterials using mechano-chemistry. <i>Nanoscale Horizons</i> , 2019 , 4, 642-646	10.8	6
58	production of a two-dimensional molybdenum disulfide/graphene hybrid nanosheet anode for lithium-ion batteries <i>RSC Advances</i> , 2020 , 10, 12754-12758	3.7	6
57	Surface wetting processing on BNNT films by selective plasma modes. <i>Science Bulletin</i> , 2013 , 58, 3403-	3408	6
56	Atomically thin boron nitride nanodisks. <i>Materials Letters</i> , 2013 , 106, 409-412	3.3	6

(2018-2017)

55	Two-Dimensional Metal Oxide Nanoflower-Like Architectures: A General Growth Method and Their Applications in Energy Storage and as Model Materials for Nanofabrication. <i>ChemPlusChem</i> , 2017 , 82, 295-302	2.8	6	
54	Long-range topological correlations of real polycrystalline grains in two dimensions. <i>Materials Characterization</i> , 2014 , 97, 178-182	3.9	6	
53	Focused ion beam milling as a universal template technique for patterned growth of carbon nanotubes. <i>Applied Physics Letters</i> , 2007 , 90, 093126	3.4	6	
52	Temperature-dependent Raman spectra of bamboo-like boron nitride nanotubes. <i>Applied Physics Express</i> , 2014 , 7, 022401	2.4	5	
51	Synthesis of porous polyvinylidene fluoride (PVDF) microspheres and their application in lithium sulfur batteries. <i>Materials Letters</i> , 2017 , 188, 180-183	3.3	5	
50	First-Principles Study of Formation and Properties of Fcc-NdOx in Nd-Fe-B Sintered Magnets. <i>Materials Science Forum</i> , 2010 , 654-656, 1674-1677	0.4	5	
49	Substitution reactions of carbon nanotube template. <i>Applied Physics Letters</i> , 2006 , 88, 223105	3.4	5	
48	Solid-state formation of carbon nanotubes 2006 , 53-80		5	
47	11B nuclear magnetic resonance study of boron nitride nanotubes prepared by mechano-thermal method. <i>Solid State Communications</i> , 2005 , 134, 419-423	1.6	5	
46	Towards the First-Principles Investigation of Ordering Dynamics. <i>Materials Science Forum</i> , 2005 , 475-479, 3075-3080	0.4	5	
45	Air-assisted growth of tin dioxide nanoribbons. <i>Journal of Nanoscience and Nanotechnology</i> , 2010 , 10, 5015-9	1.3	4	
44	Dynamics of natural spin defects in boron nitride nanotubes. <i>Journal of Nanoscience and Nanotechnology</i> , 2008 , 8, 5193-5	1.3	4	
43	Advances in synthesis and applications of boron nitride nanotubes: A review. <i>Chemical Engineering Journal</i> , 2022 , 431, 134118	14.7	4	
42	Ultra-fast and high-energy density polysulfide-eight ion batteries. <i>Journal of Power Sources</i> , 2020 , 477, 229018	8.9	4	
41	Additive-Free Nb2O5IIiO2 Hybrid Anode towards Low-Cost and Safe Lithium-Ion Batteries: A Green Electrode Material Produced in an Environmentally Friendly Process. <i>Batteries and Supercaps</i> , 2019 , 2, 160-167	5.6	4	
40	Strategies, design and synthesis of advanced nanostructured electrodes for rechargeable batteries. <i>Materials Chemistry Frontiers</i> , 2021 , 5, 5897-5931	7.8	4	
39	Nano germanium incorporated thin graphite nanoplatelets: A novel germanium based lithium-ion battery anode with enhanced electrochemical performance. <i>Electrochimica Acta</i> , 2021 , 391, 139001	6.7	4	
38	Vertically aligned EAlOOH nanosheets on Al foils as flexible and reusable substrates for NH3 adsorption. <i>Frontiers of Physics</i> , 2018 , 13, 1	3.7	3	

37	Anomalous Enhancement of Mechanical Properties in the Ammonia Adsorbed Defective Graphene. <i>Scientific Reports</i> , 2016 , 6, 33810	4.9	3
36	Half metallicity in a zigzag double-walled nanotube nanodot: An ab initio prediction. <i>Chemical Physics Letters</i> , 2009 , 468, 257-259	2.5	3
35	Mechanochemical reactions of ilmenite with different additives. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 1997 , 129-130, 61-66	5.1	3
34	Development of a prototype thermodynamic database for Nd-Fe-B permanent magnets. <i>Science and Technology of Advanced Materials</i> , 2021 , 22, 557-570	7.1	3
33	Boron Nitride Nanosheet Dispersion at High Concentrations. <i>ACS Applied Materials & Amp; Interfaces</i> , 2021 , 13, 44751-44759	9.5	3
32	Nanoparticle-mediated ultra grain refinement and reinforcement in additively manufactured titanium alloys. <i>Additive Manufacturing</i> , 2021 , 46, 102173	6.1	3
31	Promotion of the performance of nitrogen-doped graphene by secondary heteroatoms doping in energy transformation and storage. <i>lonics</i> , 2019 , 25, 3499-3522	2.7	2
30	Synthesis of High Density Boron Nitride Nanotube Film. Key Engineering Materials, 2013, 562-565, 926-	·9 29 4	2
29	Synthesis of Boron Nitride Nanotubes Using a Ball-Milling and Annealing Method 2005,		2
28	Microstructural and mechanical properties of plasma sprayed boron nitride nanotubes reinforced alumina coating. <i>Ceramics International</i> , 2021 , 47, 9194-9202	5.1	2
27	Field emission properties from boron nitride nanotube field emitters 2015,		1
26	Effect of sintering temperature on electrochemical performance of LiFe0[4Mn0[6PO4/C cathode materials. <i>Materials Research Innovations</i> , 2014 , 18, S4-2-S4-5	1.9	1
25	Supplementing Cold Plasma with Heat Enables Doping and Nano-Structuring of Metal Oxides. <i>Plasma Processes and Polymers</i> , 2014 , 11, 897-902	3.4	1
24	Verification of a generalized Aboav-Weaire law via experiment and large-scale simulation. <i>Europhysics Letters</i> , 2014 , 105, 68001	1.6	1
23	Vibronic fine structure in high-resolution x-ray absorption spectra from ion-bombarded boron nitride nanotubes. <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 2013 , 31, 031405	2.9	1
22	From Phase Equilibria to Transformation Dynamics. <i>Defect and Diffusion Forum</i> , 2007 , 263, 21-30	0.7	1
21	End-of-Life Photovoltaic Recycled Silicon: A Sustainable Circular Materials Source for Electronic Industries. <i>Advanced Energy and Sustainability Research</i> , 2021 , 2, 2100081	1.6	1
20	Surface-enhanced Raman on gold nanoparticles for the identification of the most common adulterant of Astragali Radix. <i>Spectroscopy Letters</i> , 2018 , 51, 389-394	1.1	1

19	Doping engineering on carbons as electrocatalysts for oxygen reduction reaction. <i>Fundamental Research</i> , 2021 , 1, 807-807		1
18	Advanced Dual-Ion Batteries with High-Capacity Negative Electrodes Incorporating Black Phosphorus <i>Advanced Science</i> , 2022 , e2201116	13.6	1
17	Boron nitride nanosheets for surface-enhanced Raman spectroscopy. <i>Materials Today Physics</i> , 2022 , 22, 100575	8	0
16	Lithium-metal polysulfide batteries with free-standing MoSxCy thin-film cathodes. <i>Journal of Power Sources</i> , 2021 , 511, 230445	8.9	O
15	Growth of Single-Walled Carbon Nanotubes from Well-Defined POSS Nanoclusters Structure. <i>Nano</i> , 2015 , 10, 1550004	1.1	
14	Electrochemical performance of LiFe1MnxPO4/C materials prepared by ball milling. <i>Materials Research Innovations</i> , 2014 , 18, S4-6-S4-9	1.9	
13	Preparation and Optical Properties of Amorphous SiO Nanowires 2013 , 1671-1678		
12	Magnetic, Magnetocaloric and Electrical Properties in Bulk Nanocrystalline Gd Metals 2013 , 1729-1736		
11	Multi-Scale Phase Field Simulation of Disorder-Order Transition, Combined with Cluster Variation and Path Probability Methods. <i>Materials Science Forum</i> , 2009 , 631-632, 401-406	0.4	
10	Synchrotron Photoluminescence Spectroscopy of Boron Nitride Nanotubes with Different Metal Impurities. <i>Materials Research Society Symposia Proceedings</i> , 2009 , 1204, 1		
9	V2O5 Nanorods with Improved Cycling Stability for Li Intercalation. <i>Materials Research Society Symposia Proceedings</i> , 2009 , 1170, 76		
8	Use of Focused Ion Beam Milling for Patterned Growth of Carbon Nanotubes. <i>Materials Research Society Symposia Proceedings</i> , 2008 , 1089, 30901		
7	Phase Field Calculations with CVM Free Energy within Square Approximation. <i>Materials Science Forum</i> , 2007 , 561-565, 1935-1940	0.4	
6	Mechanochemical reactions in the system FeTiO3Bi. <i>Journal of Materials Research</i> , 1998 , 13, 3499-3503	2.5	
5	Mechanochemical Reactions of Ilmenite. <i>Materials Science Forum</i> , 1998 , 269-272, 253-258	0.4	
4	Development of a Prototype Thermodynamic Database for Nd-Fe-B Permanent Magnets. <i>Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy</i> , 2022 , 69, S52-S62	0.2	
3	Boron Nitride Nanotubes. Advanced Materials and Technologies, 2006, 157-177		
2	Boron Nitride Nanotubes and Nanoribbons Produced by Ball Milling Method 2015 , 33-58		

Boron nitride nanotube films: preparation, properties, and implications for biology applications **2016**, 165-181