
Raúl DomÃ-nguez-Perles

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/589937/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ifs and buts of non-thermal processing technologies for plant-based drinks' bioactive compounds. Food Science and Technology International, 2023, 29, 445-479.	1.1	2
2	Phytoprostanes, phytofurans, tocopherols, tocotrienols, carotenoids and free amino acids and biological potential of sea buckthorn juices. Journal of the Science of Food and Agriculture, 2022, 102, 185-197.	1.7	10
3	Bioavailability and radical scavenging power of phenolic compounds of cocoa and coffee mixtures. Food Science and Technology International, 2022, 28, 514-523.	1.1	6
4	A UHPLC/MS/MS method for the analysis of active and inactive forms of GLP-1 and GIP incretins in human plasma. Talanta, 2022, 236, 122806.	2.9	3
5	The use of alternative sweeteners (sucralose and stevia) in healthy soft-drink beverages, enhances the bioavailability of polyphenols relative to the classical caloric sucrose. Food Chemistry, 2022, 370, 131051.	4.2	19
6	Contribution of the diverse experimental models to unravelling the biological scope of dietary (poly)phenols. Journal of the Science of Food and Agriculture, 2022, , .	1.7	0
7	A New Food Ingredient Rich in Bioaccessible (Poly)Phenols (and Glucosinolates) Obtained from Stabilized Broccoli Stalks. Foods, 2022, 11, 1734.	1.9	6
8	Pharmacokinetics and bioavailability of hydroxytyrosol are dependent on the food matrix in humans. European Journal of Nutrition, 2021, 60, 905-915.	1.8	32
9	Effect of coffee and cocoa-based confectionery containing coffee on markers of cardiometabolic health: results from the pocket-4-life project. European Journal of Nutrition, 2021, 60, 1453-1463.	1.8	12
10	How does water stress affect the low molecular weight phenolics of hydroSOStainable almonds?. Food Chemistry, 2021, 339, 127756.	4.2	5
11	Sweetener influences plasma concentration of flavonoids in humans after an acute intake of a new (poly)phenol-rich beverage. Nutrition, Metabolism and Cardiovascular Diseases, 2021, 31, 930-938.	1.1	13
12	The development of a broccoli supplemented beer allows obtaining a valuable dietary source of sulforaphane. Food Bioscience, 2021, 39, 100814.	2.0	8
13	Phytoprostanes and phytofurans modulate COX-2-linked inflammation markers in LPS-stimulated THP-1 monocytes by lipidomics workflow. Free Radical Biology and Medicine, 2021, 167, 335-347.	1.3	9
14	Effect of Coffee and Cocoa-Based Confectionery Containing Coffee on Markers of DNA Damage and Lipid Peroxidation Products: Results from a Human Intervention Study. Nutrients, 2021, 13, 2399.	1.7	5
15	Unravelling the capacity of hydroxytyrosol and its lipophenolic derivates to modulate the H2O2-induced isoprostanoid profile of THP-1 monocytes by UHPLC-QqQ-MS/MS lipidomic workflow. Microchemical Journal, 2021, 170, 106703.	2.3	3
16	Beverages Based on Second Quality Citrus Fruits and Maqui Berry, a Source of Bioactive (Poly)phenols: Sorting Out Urine Metabolites upon a Longitudinal Study. Nutrients, 2021, 13, 312.	1.7	17
17	Complementarity of clinical trials, model systems, and metabolomic workflow to unravel the healthy effects of foods: BEBESANO vs MODELSANO: A case study. Journal of Clinical Images and Medical Case Reports, 2021, 2, .	0.0	1
18	Influence of Baltic Agro-Environmental Conditions on Yield and Quality of Fava Bean Crops in Conventional Systems. Agriculture (Switzerland), 2021, 11, 1042.	1.4	0

#	Article	IF	CITATIONS
19	Evidence on the Bioaccessibility of Glucosinolates and Breakdown Products of Cruciferous Sprouts by Simulated In Vitro Gastrointestinal Digestion. International Journal of Molecular Sciences, 2021, 22, 11046.	1.8	10
20	Fatty Acid Hydroxytyrosyl Esters of Olive Oils Are Bioaccessible According to Simulated <i>In Vitro</i> Gastrointestinal Digestion: Unraveling the Role of Digestive Enzymes on Their Stability. Journal of Agricultural and Food Chemistry, 2021, 69, 14165-14175.	2.4	4
21	In Vitro Evidence on Bioaccessibility of Flavonols and Cinnamoyl Derivatives of Cruciferous Sprouts. Nutrients, 2021, 13, 4140.	1.7	9
22	A comprehensive approach to the bioavailability and cardiometabolic effects of the bioactive compounds present in espresso coffee and confectionery-derived coffee. Proceedings of the Nutrition Society, 2020, 79, .	0.4	1
23	Effects of Deficit Irrigation, Rootstock, and Roasting on the Contents of Fatty Acids, Phytoprostanes, and Phytofurans in Pistachio Kernels. Journal of Agricultural and Food Chemistry, 2020, 68, 8915-8924.	2.4	14
24	Evaluation of <i>Phoenix dactylifera</i> Edible Parts and Byproducts as Sources of Phytoprostanes and Phytofurans. Journal of Agricultural and Food Chemistry, 2020, 68, 8942-8950.	2.4	10
25	Nutriproteomics survey of sweet chestnut (Castanea sativa Miller) genetic resources in Portugal. Food Bioscience, 2020, 36, 100622.	2.0	5
26	Bioavailable phytoprostanes and phytofurans from <i>Gracilaria longissima</i> have anti-inflammatory effects in endothelial cells. Food and Function, 2020, 11, 5166-5178.	2.1	21
27	A cyclic dipeptide from the Chilean hazelnut cotyledons (Gevuina avellana Mol., Proteaceae). Scientific Reports, 2020, 10, 7070.	1.6	5
28	Bioactive plant oxylipins-based lipidomics in eighty worldwide commercial dark chocolates: Effect of cocoa and fatty acid composition on their dietary burden. Microchemical Journal, 2020, 157, 105083.	2.3	7
29	New Insights in (Poly)phenolic Compounds: From Dietary Sources to Health Evidence. Foods, 2020, 9, 543.	1.9	15
30	Phytoprostanes and Phytofurans—Oxidative Stress and Bioactive Compounds—in Almonds are Affected by Deficit Irrigation in Almond Trees. Journal of Agricultural and Food Chemistry, 2020, 68, 7214-7225.	2.4	20
31	Enriched nutritional beverages, much more than an ingredient mix addition. Acta Horticulturae, 2020, , 17-28.	0.1	Ο
32	Metalliferous conditions induce regulation in antioxidant activities, polyphenolics and nutritional quality of <i>Moringa oleifera</i> L. International Journal of Phytoremediation, 2020, 22, 1348-1361.	1.7	6
33	Targeted Lipidomics Profiling Reveals the Generation of Hydroxytyrosol-Fatty Acids in Hydroxytyrosol-Fortified Oily Matrices: New Analytical Methodology and Cytotoxicity Evaluation. Journal of Agricultural and Food Chemistry, 2020, 68, 7789-7799.	2.4	9
34	Alternative Sweeteners Modify the Urinary Excretion of Flavanones Metabolites Ingested through a New Maqui-Berry Beverage. Foods, 2020, 9, 41.	1.9	15
35	Stevia vs. Sucrose: Influence on the Phytochemical Content of a Citrus–Maqui Beverage—A Shelf Life Study. Foods, 2020, 9, 219.	1.9	22
36	Optimization of Free Phytoprostane and Phytofuran Production by Enzymatic Hydrolysis of Pea Extracts Using Esterases. Journal of Agricultural and Food Chemistry, 2020, 68, 3445-3455.	2.4	10

#	Article	IF	CITATIONS
37	Anthocyanin Metabolites in Human Urine after the Intake of New Functional Beverages. Molecules, 2020, 25, 371.	1.7	31
38	The Value of Legume Foods as a Dietary Source of Phytoprostanes and Phytofurans Is Dependent on Species, Variety, and Growing Conditions. European Journal of Lipid Science and Technology, 2019, 121, 1800484.	1.0	17
39	Phenolic, oxylipin and fatty acid profiles of the Chilean hazelnut (Gevuina avellana): Antioxidant activity and inhibition of pro-inflammatory and metabolic syndrome-associated enzymes. Food Chemistry, 2019, 298, 125026.	4.2	33
40	A Box-Behnken Design for Optimal Extraction of Phenolics from Almond By-products. Food Analytical Methods, 2019, 12, 2009-2024.	1.3	19
41	New UHPLC-QqQ-MS/MS Method for the Rapid and Sensitive Analysis of Ascorbic and Dehydroascorbic Acids in Plant Foods. Molecules, 2019, 24, 1632.	1.7	20
42	Immunoassay for food quality evaluation. , 2019, , 661-695.		0
43	Update on oxidative stress and inflammation in pregnant women, unborn children (nasciturus), and newborns – Nutritional and dietary effects. Free Radical Biology and Medicine, 2019, 142, 38-51.	1.3	27
44	Sorting out the Value of Cruciferous Sprouts as Sources of Bioactive Compounds for Nutrition and Health. Nutrients, 2019, 11, 429.	1.7	71
45	Irrigation deficit turns almond by-products into a valuable source of antimicrobial (poly)phenols. Industrial Crops and Products, 2019, 132, 186-196.	2.5	22
46	Statement of Foliar Fertilization Impact on Yield, Composition, and Oxidative Biomarkers in Rice. Journal of Agricultural and Food Chemistry, 2019, 67, 597-605.	2.4	23
47	HPLC-DAD-ESI/MSn phenolic profile and in vitro biological potential of Centaurium erythraea Rafn aqueous extract. Food Chemistry, 2019, 278, 424-433.	4.2	17
48	Virulence, attachment and invasion of Caco-2†cells by multidrug-resistant bacteria isolated from wild animals. Microbial Pathogenesis, 2019, 128, 230-235.	1.3	8
49	Sorting out the phytoprostane and phytofuran profile in vegetable oils. Food Research International, 2018, 107, 619-628.	2.9	28
50	Waking Up from Four Decades' Long Dream of Valorizing Agro-Food Byproducts: Toward Practical Applications of the Gained Knowledge. Journal of Agricultural and Food Chemistry, 2018, 66, 3069-3073.	2.4	20
51	Structural/Functional Matches and Divergences of Phytoprostanes and Phytofurans with Bioactive Human Oxylipins. Antioxidants, 2018, 7, 165.	2.2	26
52	Impact of Salicylic Acid Content and Growing Environment on Phytoprostane and Phytofuran (Stress) Tj ETQqO	0 0.rgBT /0	Overlock 10 T
53	Monitoring the antioxidant and antimicrobial power of grape (Vitis vinifera L.) stems phenolics over long-term storage. Industrial Crops and Products, 2018, 126, 83-91.	2.5	47

Nanoparticles and Controlled Delivery for Bioactive Compounds: Outlining Challenges for New 1.9 142 $\hat{a} \in \mathfrak{C}$ Smart-Foods $\hat{a} \in \mathfrak{F}$ for Health. Foods, 2018, 7, 72.

#	Article	IF	CITATIONS
55	Foods and supplements. , 2018, , 327-362.		0
56	Polyphenolic profile and antioxidant activity of meristem and leaves from "chagual―(Puya chilensis) Tj ETQq(0 0 0 rgB1	Qyerlock 10
57	Gender differences in plasma and urine metabolites from Sprague–Dawley rats after oral administration of normal and high doses of hydroxytyrosol, hydroxytyrosol acetate, and DOPAC. European Journal of Nutrition, 2017, 56, 215-224.	4.6	39
58	Evaluation of vegetable–faba bean (<i>Vicia faba</i> L.) intercropping under Latvian agroâ€ecological conditions. Journal of the Science of Food and Agriculture, 2017, 97, 4334-4342.	1.7	16
59	FTIR chemometrical approach for clonal assessment: Selection of <i>Olea europaea</i> L. optimal phenotypes from cv. Cobrançosa. Journal of Chemometrics, 2017, 31, e2860.	0.7	4
60	New grape stems' isolated phenolic compounds modulate reactive oxygen species, glutathione, and lipid peroxidation in vitro: Combined formulations with vitamins C and E. Fìtoterapìâ, 2017, 120, 146-157.	1.1	32
61	Qualitative and quantitative changes in polyphenol composition and bioactivity of Ribes magellanicum and R. punctatum after in vitro gastrointestinal digestion. Food Chemistry, 2017, 237, 1073-1082.	4.2	63
62	Spectrophotometric versus <scp>NIRâ€MIR</scp> assessments of cowpea pods for discriminating the impact of freezing. Journal of the Science of Food and Agriculture, 2017, 97, 4285-4294.	1.7	5
63	Physiological linkage of gender, bioavailable hydroxytyrosol derivatives, and their metabolites with systemic catecholamine metabolism. Food and Function, 2017, 8, 4570-4581.	2.1	12
64	Comparative Study of the Phytoprostane and Phytofuran Content of <i>indica</i> and <i>japonica</i> Rice (<i>Oryza sativa</i> L.) Flours. Journal of Agricultural and Food Chemistry, 2017, 65, 8938-8947.	2.4	29
65	Evaluating the freezing impact on the proximate composition of immature cowpea (<i>Vigna) Tj ETQq1 1 0.7843 Food and Agriculture, 2017, 97, 4295-4305.</i>	14 rgBT /(1.7	Overlock 10 13
66	Valorization Challenges to Almond Residues: Phytochemical Composition and Functional Application. Molecules, 2017, 22, 1774.	1.7	70
67	Critical Review on the Significance of Olive Phytochemicals in Plant Physiology and Human Health. Molecules, 2017, 22, 1986.	1.7	57
68	Kinetics of the Polyphenolic Content and Radical Scavenging Capacity in Olives through On-Tree Ripening. Journal of Chemistry, 2017, 2017, 1-11.	0.9	12
69	Addressing Facts and Gaps in the Phenolics Chemistry of Winery By-Products. Molecules, 2017, 22, 286.	1.7	40
70	Oxidative stress prevention and anti-apoptosis activity of grape (Vitis vinifera L.) stems in human keratinocytes. Food Research International, 2016, 87, 92-102.	2.9	36
71	Effect of Agroâ€Environmental Factors on the Mineral Content of Olive Oils: Categorization of the Three Major Portuguese Cultivars. JAOCS, Journal of the American Oil Chemists' Society, 2016, 93, 813-822.	0.8	12
72	Sorting out the value of spectroscopic tools to assess the <i>Colletotrichum acutatum</i> impact in olive cultivars with different susceptibilities. Journal of Chemometrics, 2016, 30, 548-558.	0.7	4

#	Article	IF	CITATIONS
73	Chemometric analysis on free amino acids and proximate compositional data for selecting cowpea (Vigna unguiculata L.) diversity. Journal of Food Composition and Analysis, 2016, 53, 69-76.	1.9	11
74	Cowpea (<i>Vigna unguiculata</i> L. Walp), a renewed multipurpose crop for a more sustainable agriâ€food system: nutritional advantages and constraints. Journal of the Science of Food and Agriculture, 2016, 96, 2941-2951.	1.7	169
75	Profiling of polyphenolics, nutrients and antioxidant potential of germplasm's leaves from seven cultivars of Moringa oleifera Lam Industrial Crops and Products, 2016, 83, 166-176.	2.5	128
76	New grape stems-based liqueur: Physicochemical and phytochemical evaluation. Food Chemistry, 2016, 190, 896-903.	4.2	11
77	Grape stems as a source of bioactive compounds: application towards added-value commodities and significance for human health. Phytochemistry Reviews, 2015, 14, 921-931.	3.1	32
78	The intake of broccoli sprouts modulates the inflammatory and vascular prostanoids but not the oxidative stress-related isoprostanes in healthy humans. Food Chemistry, 2015, 173, 1187-1194.	4.2	39
79	Phytochemistry and activity against digestive pathogens of grape (Vitis vinifera L.) stem's (poly)phenolic extracts. LWT - Food Science and Technology, 2015, 61, 25-32.	2.5	42
80	Flavanâ€3â€ols, anthocyanins, and inflammation. IUBMB Life, 2014, 66, 745-758.	1.5	71
81	Involvement of a glucosinolate (sinigrin) in the regulation of water transport in <scp><i>Brassica oleracea</i></scp> grown under salt stress. Physiologia Plantarum, 2014, 150, 145-160.	2.6	35
82	<i>Brassica</i> Foods as a Dietary Source of Vitamin C: A Review. Critical Reviews in Food Science and Nutrition, 2014, 54, 1076-1091.	5.4	61
83	Assessment of (poly)phenols in grape (Vitis vinifera L.) stems by using food/pharma industry compatible solvents and Response Surface Methodology. Food Chemistry, 2014, 164, 339-346.	4.2	53
84	Evaluation of grape (Vitis vinifera L.) stems from Portuguese varieties as a resource of (poly)phenolic compounds: A comparative study. Food Research International, 2014, 65, 375-384.	2.9	68
85	A new ultra-rapid UHPLC/MS/MS method for assessing glucoraphanin and sulforaphane bioavailability in human urine. Food Chemistry, 2014, 143, 132-138.	4.2	46
86	Natural Bioactive Compounds from Winery By-Products as Health Promoters: A Review. International Journal of Molecular Sciences, 2014, 15, 15638-15678.	1.8	413
87	Metabolomics and the Diagnosis of Human Diseases -A Guide to the Markers and Pathophysiological Pathways Affected. Current Medicinal Chemistry, 2014, 21, 823-848.	1.2	52
88	The effects of the intake of plant foods on the human metabolome. TrAC - Trends in Analytical Chemistry, 2013, 52, 88-99.	5.8	18
89	Integrated Analysis of COX-2 and iNOS Derived Inflammatory Mediators in LPS-Stimulated RAW Macrophages Pre-Exposed to Echium plantagineum L. Bee Pollen Extract. PLoS ONE, 2013, 8, e59131.	1.1	85
90	Physical activity increases the bioavailability of flavanones after dietary aronia-citrus juice intake in triathletes. Food Chemistry, 2012, 135, 2133-2137.	4.2	25

RaúL DomÃnguez-Perles

#	Article	IF	CITATIONS
91	Assessment of oxidative stress markers and prostaglandins after chronic training of triathletes. Prostaglandins and Other Lipid Mediators, 2012, 99, 79-86.	1.0	47
92	A ultraâ€pressure liquid chromatography/triple quadrupole tandem mass spectrometry method for the analysis of 13 eicosanoids in human urine and quantitative 24 hour values in healthy volunteers in a controlled constant diet. Rapid Communications in Mass Spectrometry, 2012, 26, 1249-1257.	0.7	72
93	Analysis of the tumoral cytotoxicity of green tea-infusions enriched with broccoli. Food Chemistry, 2012, 132, 1197-1206.	4.2	18
94	Composition and antioxidant capacity of a novel beverage produced with green tea and minimally-processed byproducts of broccoli. Innovative Food Science and Emerging Technologies, 2011, 12, 361-368.	2.7	63
95	Novel varieties of broccoli for optimal bioactive components under saline stress. Journal of the Science of Food and Agriculture, 2011, 91, 1638-1647.	1.7	35
96	Minerals in Plant Food: Effect of Agricultural Practices and Role in Human Health. , 2011, , 111-128.		10
97	Role of Thrombospondin 1 in Macrophage Inflammation in Dysferlin Myopathy. Journal of Neuropathology and Experimental Neurology, 2010, 69, 643-653.	0.9	33
98	Natural bioactive compounds of Citrus limon for food and health. Journal of Pharmaceutical and Biomedical Analysis, 2010, 51, 327-345.	1.4	357
99	Broccoliâ€Derived Byâ€Products—A Promising Source of Bioactive Ingredients. Journal of Food Science, 2010, 75, C383-92.	1.5	130
100	Minerals in plant food: effect of agricultural practices and role in human health. A review. Agronomy for Sustainable Development, 2010, 30, 295-309.	2.2	158
101	Proteomics identification of differentially expressed proteins in the muscle of dysferlin myopathy patients. Proteomics - Clinical Applications, 2009, 3, 486-497.	0.8	9
102	G.P.10.02 Proteomics identification of differentially expressed proteins in the muscle of dysferlin myopathy patients. Neuromuscular Disorders, 2008, 18, 790.	0.3	0
103	G.P.10.03 Quantification of dysferlin in monocytes: A useful tool for the detection of patients and carriers of dysferlinopathy. Neuromuscular Disorders, 2008, 18, 790-791.	0.3	2
104	G.P.10.08 Increased lysosomes trafficking and poly(ADP-ribose)polymerase-1 expression in dysferlin myopathy: Implications in muscle fiber necrosis. Neuromuscular Disorders, 2008, 18, 792.	0.3	0
105	Autosomal-dominant distal myopathy with a myotilin S55F mutation: sorting out the phenotype. Journal of Neurology, Neurosurgery and Psychiatry, 2008, 79, 205-208.	0.9	31
106	Dysferlin expression in monocytes: A source of mRNA for mutation analysis. Neuromuscular Disorders, 2007, 17, 69-76.	0.3	71
107	Symptomatic dysferlin gene mutation carriers: Characterization of two cases. Neurology, 2007, 68, 1284-1289.	1.5	52
108	P.P.6 07 Symptomatic dysferlin gene mutation carriers: characterization of two cases. Neuromuscular Disorders, 2006, 16, 696.	0.3	0

#	Article	IF	CITATIONS
109	Absence of Dysferlin Alters Myogenin Expression and Delays Human Muscle Differentiation "in Vitro― Journal of Biological Chemistry, 2006, 281, 17092-17098.	1.6	88
110	Antibody-mediated signaling through PD-1 costimulates T cells and enhances CD28-dependent proliferation. European Journal of Immunology, 2005, 35, 3545-3560.	1.6	28
111	Differentiation "in vitro―of primary and immortalized porcine mesenchymal stem cells into cardiomyocytes for cell transplantation. Transplantation Proceedings, 2005, 37, 481-482.	0.3	72
112	FTY720 Inhibits TH1-Mediated Allogeneic Humoral Immune Response. Transplantation Proceedings, 2005, 37, 4124-4126.	0.3	8
113	Inducción de tolerancia en el trasplante de órganos sólidos. GastroenterologÃa Y HepatologÃa, 2004, 27, 66-72.	0.2	0