Housheng Su

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5899305/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Geometric Approach to Second-Order Consensus of Heterogeneous Networked Systems. IEEE Transactions on Cybernetics, 2024, , 1-10.	6.2	6
2	Finite-Time Output Synchronization of Multiple Weighted Reaction–Diffusion Neural Networks With Adaptive Output Couplings. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35, 169-181.	7.2	4
3	Distributed Observer-Based Leader–Follower Consensus of Multiple Euler–Lagrange Systems. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35, 157-168.	7.2	3
4	Sampling-Based Event-Triggered Exponential Synchronization for Reaction-Diffusion Neural Networks. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34, 1209-1217.	7.2	10
5	Semiglobal Robust Consensus of General Linear MASs Subject to Input Saturation and Additive Perturbations. IEEE Transactions on Cybernetics, 2023, 53, 3806-3817.	6.2	3
6	Geometric Renormalization Reveals the Self-Similarity of Weighted Networks. IEEE Transactions on Computational Social Systems, 2023, 10, 426-434.	3.2	6
7	Consensus of Matrix-Weighted Hybrid Multiagent Systems. IEEE Transactions on Cybernetics, 2023, 53, 668-678.	6.2	6
8	Interval Coordination of Multiagent Networks With Antagonistic Interactions. IEEE Transactions on Automatic Control, 2023, 68, 2552-2559.	3.6	9
9	Consensus on Directed Matrix-Weighted Networks. IEEE Transactions on Automatic Control, 2023, 68, 2529-2535.	3.6	11
10	Second-Order Consensus for Multiagent Systems With Switched Dynamics. IEEE Transactions on Cybernetics, 2022, 52, 4105-4114.	6.2	9
11	A Fully Distributed Protocol for Flocking of Time-Varying Linear Systems With Dynamic Leader and External Disturbance. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52, 1234-1242.	5.9	10
12	Model-Free Algorithms for Containment Control of Saturated Discrete-Time Multiagent Systems via <i>Q</i> -Learning Method. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52, 1308-1316.	5.9	11
13	<i>H</i> â^ž Control for Observer-Based Non-Negative Edge Consensus of Discrete-Time Networked Systems. IEEE Transactions on Cybernetics, 2022, 52, 2351-2360.	6.2	3
14	Consensus of Continuous-Time Linear Multiagent Systems With Discrete Measurements. IEEE Transactions on Cybernetics, 2022, 52, 3196-3206.	6.2	3
15	Consensus-Based Distributed Reduced-Order Observer Design for LTI Systems. IEEE Transactions on Cybernetics, 2022, 52, 6331-6341.	6.2	17
16	General Second-Order Consensus of Discrete-Time Multiagent Systems via Q-Learning Method. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52, 1417-1425.	5.9	5
17	Output-Feedback Global Consensus of Discrete-Time Multiagent Systems Subject to Input Saturation via <i>Q</i> -Learning Method. IEEE Transactions on Cybernetics, 2022, 52, 1661-1670.	6.2	11
18	Necessary and Sufficient Conditions for Containment in Fractional-Order Multiagent Systems via Sampled Data. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52, 238-246.	5.9	11

#	Article	IF	CITATIONS
19	Scanning-Chain Formation Control for Multiple Unmanned Surface Vessels to Pass Through Water Channels. IEEE Transactions on Cybernetics, 2022, 52, 1850-1861.	6.2	34
20	Distributed Adaptive Containment Control for Coupled Reaction-Diffusion Neural Networks With Directed Topology. IEEE Transactions on Cybernetics, 2022, 52, 6320-6330.	6.2	15
21	Finite-Time Synchronization of Markovian Coupled Neural Networks With Delays via Intermittent Quantized Control: Linear Programming Approach. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33, 5268-5278.	7.2	63
22	Bipartite Consensus for Second-Order Multiagent Systems With Matrix-Weighted Signed Network. IEEE Transactions on Cybernetics, 2022, 52, 13038-13047.	6.2	28
23	Distributed Adaptive Consensus of Parabolic PDE Agents on Switching Graphs With Relative Output Information. IEEE Transactions on Industrial Informatics, 2022, 18, 297-304.	7.2	18
24	Finite-time bipartite synchronization of switched competitive neural networks with time delay via quantized control. ISA Transactions, 2022, 125, 156-165.	3.1	47
25	Second-Order Consensus for Multiagent Systems With Switched Dynamics and Sampled Position Data. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52, 4129-4137.	5.9	10
26	Adaptive Bipartite Time-Varying Output Formation Control for Multiagent Systems on Signed Directed Graphs. IEEE Transactions on Cybernetics, 2022, 52, 8987-9000.	6.2	41
27	Identification of Network Topology Variations Based on Spectral Entropy. IEEE Transactions on Cybernetics, 2022, 52, 10468-10478.	6.2	9
28	Model-Free Event-Triggered Consensus Algorithm for Multiagent Systems Using Reinforcement Learning Method. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52, 5212-5221.	5.9	6
29	Reduced-order interval observer based consensus for MASs with time-varying interval uncertainties. Automatica, 2022, 135, 109989.	3.0	38
30	Inverse-Optimal Consensus Control of Fractional-Order Multiagent Systems. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52, 5320-5331.	5.9	4
31	Robust Consensus of Multiagent Dynamics With Transmission Constraints and Noises. IEEE Transactions on Network Science and Engineering, 2022, 9, 1540-1552.	4.1	3
32	Finite-Time Output Synchronization for Output-Coupled Reaction-Diffusion Neural Networks With Directed Topology. IEEE Transactions on Network Science and Engineering, 2022, 9, 1386-1394.	4.1	8
33	Asynchronous Control of Switched Discrete-Time Positive Systems With Delay. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52, 7193-7200.	5.9	23
34	Adaptive bipartite consensus of competitive linear multiâ€agent systems with asynchronous intermittent communication. International Journal of Robust and Nonlinear Control, 2022, 32, 5120-5140.	2.1	34
35	Distributed Adaptive Output Feedback Consensus of Parabolic PDE Agents on Undirected Networks. IEEE Transactions on Cybernetics, 2022, 52, 7742-7752.	6.2	7
36	\${H_infty }\$ Consensus for Discrete-Time Fractional-Order Multi-Agent Systems With Disturbance via Q-Learning in Zero-Sum Games. IEEE Transactions on Network Science and Engineering, 2022, 9, 2803-2814.	4.1	4

#	Article	IF	CITATIONS
37	Distributed algorithm for mixed equilibrium problems with event-triggered strategy. Neural Computing and Applications, 2022, 34, 16463-16472.	3.2	1
38	Observer-based consensus for fractional-order multi-agent systems with positive constraint. Neurocomputing, 2022, 501, 489-498.	3.5	8
39	Second-Order Consensus for Multi-Agent Systems With Various Intelligent Levels via Intermittent Sampled-Data Control. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69, 4899-4903.	2.2	3
40	<i>H</i> _{â^ž} Control for Observer-Based Non-Negative Scaled Edge-Consensus of Networked Systems. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51, 7801-7812.	5.9	5
41	Detection of Data Integrity Attacks in Distributed State Estimation. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51, 7735-7744.	5.9	8
42	Adaptive Observer-Based Output Regulation of Multiagent Systems With Communication Constraints. IEEE Transactions on Cybernetics, 2021, 51, 5259-5268.	6.2	15
43	Second-Order Consensus of Hybrid Multiagent Systems. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51, 6503-6512.	5.9	21
44	Robust Global Coordination of Networked Systems With Input Saturation and External Disturbances. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51, 7788-7800.	5.9	15
45	Fractional-order controllability of multi-agent systems with time-delay. Neurocomputing, 2021, 424, 268-277.	3.5	13
46	Necessary and Sufficient Conditions for Consensus in Fractional-Order Multiagent Systems via Sampled Data Over Directed Graph. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51, 2501-2511.	5.9	47
47	Some necessary and sufficient conditions for containment of second-order multi-agent systems with intermittent sampled data. ISA Transactions, 2021, 108, 154-163.	3.1	13
48	The variant d-path Laplacian based consensus protocols for networked harmonic oscillators. Neurocomputing, 2021, 422, 277-286.	3.5	3
49	Observability of Leader-Based Discrete-Time Multi-Agent Systems Over Signed Networks. IEEE Transactions on Network Science and Engineering, 2021, 8, 25-39.	4.1	8
50	Global Consensus of Positive Edge System With Sector Input Nonlinearities. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51, 4057-4066.	5.9	19
51	Semiglobal Observer-Based Positive Scaled Edge-Consensus of Networked Discrete-Time Systems Under Actuator Saturation. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51, 4543-4554.	5.9	8
52	Formation-containment control for multi-agent systems with sampled data and time delays. Neurocomputing, 2021, 424, 125-131.	3.5	23
53	Model-Independent Containment Control for Dynamic Multiple Euler-Lagrange Systems With Disturbances and Uncertainties. IEEE Transactions on Network Science and Engineering, 2021, 8, 3443-3452.	4.1	11
54	Interval Observer-Based Robust Coordination Control of Multi-Agent Systems Over Directed Networks. IEEE Transactions on Circuits and Systems I: Regular Papers, 2021, 68, 5145-5155.	3.5	11

#	Article	IF	CITATIONS
55	Interval Observer Design and Consensus of MultiAgent Systems with Time-Varying Interval Uncertainties. SIAM Journal on Control and Optimization, 2021, 59, 3392-3417.	1.1	19
56	Opinion separation in leader–follower coopetitive social networks. Neurocomputing, 2021, 434, 90-97.	3.5	9
57	Observability of Heterogeneous Multi-Agent Systems. IEEE Transactions on Network Science and Engineering, 2021, 8, 1828-1841.	4.1	7
58	Second-order consensus of multiagent systems with matrix-weighted network. Neurocomputing, 2021, 433, 1-9.	3.5	19
59	Containment control in fractional-order multi-agent systems with intermittent sampled data over directed networks. Neurocomputing, 2021, 442, 209-220.	3.5	7
60	Semi-global Adaptive Bipartite Output Consensus of Multi-agent Systems Subject to Input Saturation and External Disturbance Under Switching Network. International Journal of Control, Automation and Systems, 2021, 19, 3037-3048.	1.6	5
61	Positive consensus of fractional-order multi-agent systems. Neural Computing and Applications, 2021, 33, 16139-16148.	3.2	1
62	Robust flocking for non-identical second-order nonlinear multi-agent systems. Autonomous Intelligent Systems, 2021, 1, 1.	2.0	1
63	Containment Control for Networked Fractional-Order Systems With Sampled Position Data. IEEE Transactions on Circuits and Systems I: Regular Papers, 2021, 68, 3881-3889.	3.5	14
64	Finite-size scaling of geometric renormalization flows in complex networks. Physical Review E, 2021, 104, 034304.	0.8	7
65	Observer-based semi-global containment of saturated multi-agent systems with uncertainties. Journal of the Franklin Institute, 2021, 358, 7740-7760.	1.9	4
66	Flocking of uncertain nonlinear multi-agent systems via distributed adaptive event-triggered control. Neurocomputing, 2021, 465, 503-513.	3.5	15
67	Controllability for multi-agent systems with matrix-weight-based signed network. Applied Mathematics and Computation, 2021, 411, 126520.	1.4	10
68	Leader–follower controllability of signed networks. ISA Transactions, 2021, , .	3.1	2
69	Observer-Based Synchronization of Chaotic Systems Satisfying Incremental Quadratic Constraints and Its Application in Secure Communication. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020, 50, 5221-5232.	5.9	51
70	Controllability of Two-Time-Scale Discrete-Time Multiagent Systems. IEEE Transactions on Cybernetics, 2020, 50, 1440-1449.	6.2	53
71	Semiglobal Observer-Based Non-Negative Edge Consensus of Networked Systems With Actuator Saturation. IEEE Transactions on Cybernetics, 2020, 50, 2827-2836.	6.2	41
72	Second-Order Consensus for Multiagent Systems via Intermittent Sampled Position Data Control. IEEE Transactions on Cybernetics, 2020, 50, 2063-2072.	6.2	90

#	Article	IF	CITATIONS
73	Group controllability of two-time-scale discrete-time multi-agent systems. Journal of the Franklin Institute, 2020, 357, 3524-3540.	1.9	3
74	Collective Dynamics and Control for Multiple Unmanned Surface Vessels. IEEE Transactions on Control Systems Technology, 2020, 28, 2540-2547.	3.2	55
75	Consensus in Fractional-Order Multi-Agent Systems With Intermittence Sampled Data Over Directed Networks. IEEE Transactions on Circuits and Systems II: Express Briefs, 2020, 67, 365-369.	2.2	25
76	Positive edge consensus of networked systems with input saturation. ISA Transactions, 2020, 96, 210-217.	3.1	15
77	Consensus of Delayed Fractional-Order Multiagent Systems With Intermittent Sampled Data. IEEE Transactions on Industrial Informatics, 2020, 16, 3828-3837.	7.2	33
78	Some necessary and sufficient conditions for containment of second-order multi-agent systems with sampled position data. Neurocomputing, 2020, 378, 228-237.	3.5	34
79	Scaled Consensus of Second-Order Nonlinear Multiagent Systems With Time-Varying Delays via Aperiodically Intermittent Control. IEEE Transactions on Cybernetics, 2020, 50, 3503-3516.	6.2	50
80	Consensus of Second-Order Hybrid Multiagent Systems by Event-Triggered Strategy. IEEE Transactions on Cybernetics, 2020, 50, 4648-4657.	6.2	39
81	Coordination Control for Uncertain Networked Systems Using Interval Observers. IEEE Transactions on Cybernetics, 2020, 50, 4008-4019.	6.2	53
82	The Infimum on Laplacian Eigenvalues of a Connected Extended Graph: An Edge-Grafting Perspective. IEEE Transactions on Circuits and Systems II: Express Briefs, 2020, 67, 2627-2631.	2.2	2
83	Group Controllability of Discrete-Time Time-Delayed Multiagent Systems with Multiple Leaders. Complexity, 2020, 2020, 1-10.	0.9	1
84	Observer-Based Robust Containment Control of Multi-agent Systems With Input Saturation. , 2020, , .		0
85	Adaptive Bipartite Time-Varying Formation Control for Multi-Agent Systems on Directed Graph. , 2020, ,		1
86	Disturbance-observer based consensus of linear multi-agent systems with exogenous disturbance under intermittent communication. Neurocomputing, 2020, 404, 26-33.	3.5	32
87	Controllability of discrete-time multi-agent systems based on absolute protocol with time-delays. Neurocomputing, 2020, 409, 316-328.	3.5	10
88	Completely model-free RL-based consensus of continuous-time multi-agent systems. Applied Mathematics and Computation, 2020, 382, 125312.	1.4	29
89	On the Group Controllability of Leader-Based Continuous-Time Multiagent Systems. Complexity, 2020, 2020, 1-11.	0.9	1
90	Local Synchronization on Asynchronous Tissue P Systems With Symport/Antiport Rules. IEEE Transactions on Nanobioscience, 2020, 19, 315-320.	2.2	12

#	Article	IF	CITATIONS
91	The Bipartite Consensus for Multi-Agent Systems With Matrix-Weight-Based Signed Network. IEEE Transactions on Circuits and Systems II: Express Briefs, 2020, 67, 2019-2023.	2.2	26
92	Formation-containment control of multi-robot systems under a stochastic sampling mechanism. Science China Technological Sciences, 2020, 63, 1025-1034.	2.0	36
93	A New Perspective to Algebraic Characterization on Controllability of Multiagent Systems. Complexity, 2020, 2020, 1-12.	0.9	3
94	Framework based on communicability to measure the similarity of nodes in complex networks. Information Sciences, 2020, 524, 241-253.	4.0	10
95	Observability of leaderâ€based discreteâ€time multiâ€agent systems with switching topology. IET Control Theory and Applications, 2020, 14, 2462-2471.	1.2	6
96	Multiâ€rate sampledâ€data algorithm for leader–follower flocking. IET Control Theory and Applications, 2020, 14, 3038-3046.	1.2	0
97	Neighborhood Interval Observer Based Coordination Control for Multi-agent Systems with Disturbances. IFAC-PapersOnLine, 2020, 53, 10994-10999.	0.5	5
98	Semi-global scaled edge-consensus of linear discrete-time multi-agent systems with positive constraint and input saturation. , 2020, , .		0
99	The variant \$d\$-path Laplacian based consensus of networked lpv multi-agent systems. , 2020, , .		Ο
100	Positive Edge-Consensus for Nodal Networks via Output Feedback. IEEE Transactions on Automatic Control, 2019, 64, 1244-1249.	3.6	102
101	Semi-Global Output Consensus for Discrete-Time Switching Networked Systems Subject to Input Saturation and External Disturbances. IEEE Transactions on Cybernetics, 2019, 49, 3934-3945.	6.2	86
102	Observer-Based Consensus for Positive Multiagent Systems With Directed Topology and Nonlinear Control Input. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019, 49, 1459-1469.	5.9	73
103	Semi-global leader-following coordination of multi-agent systems with input saturation and aperiodic intermittent communications. Journal of the Franklin Institute, 2019, 356, 1051-1066.	1.9	20
104	Stochastic stability analysis of evolutionary two-player games on regular graphs. Physica A: Statistical Mechanics and Its Applications, 2019, 535, 122364.	1.2	4
105	Containment control of second-order multi-agent systems via intermittent sampled position data communication. Applied Mathematics and Computation, 2019, 362, 124522.	1.4	41
106	Semiâ€global edgeâ€consensus of linear discreteâ€time multiâ€agent systems with positive constraint and input saturation. IET Control Theory and Applications, 2019, 13, 979-987.	1.2	13
107	An iterative Q-learning based global consensus of discrete-time saturated multi-agent systems. Chaos, 2019, 29, 103127.	1.0	10
108	Semi-global observer-based nonnegative edge-consensus of linear discrete-time multi-agent systems with nonnegative constraint and input saturation. Neurocomputing, 2019, 339, 36-44.	3.5	15

#	Article	IF	CITATIONS
109	A Stochastic Sampling Mechanism for Time-Varying Formation of Multiagent Systems With Multiple Leaders and Communication Delays. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30, 3699-3707.	7.2	85
110	Controllability of heterogeneous multiagent systems with two-time-scale feature. Chaos, 2019, 29, 043116.	1.0	8
111	Consensus of hybrid multi-agent systems by event-triggered/self-triggered strategy. Applied Mathematics and Computation, 2019, 359, 490-501.	1.4	38
112	Sampledâ€data leader–follower algorithm for flocking of multiâ€agent systems. IET Control Theory and Applications, 2019, 13, 609-619.	1.2	10
113	Leader-following consensus of nonlinear fractional-order multi-agent systems over directed networks. Nonlinear Dynamics, 2019, 96, 1391-1403.	2.7	29
114	Time-varying formation for linear multi-agent systems based on sampled data with multiple leaders. Neurocomputing, 2019, 339, 59-65.	3.5	48
115	Robust adaptive synchronization of complex network with bounded disturbances. Advances in Difference Equations, 2019, 2019, .	3.5	7
116	Distributed load sharing and transmission power loss optimisation for DC microgrids. IET Control Theory and Applications, 2019, 13, 2930-2939.	1.2	8
117	Distributed Cooperative Attitude Tracking for Multiple Flexible Spacecraft under a Directed Graph. , 2019, , .		2
118	On the Observability of Leader-Based Multiagent Systems with Fixed Topology. Complexity, 2019, 2019, 1-10.	0.9	13
119	Continuous-Time Opinion Dynamics With Stochastic Multiplicative Noises. IEEE Transactions on Circuits and Systems II: Express Briefs, 2019, 66, 988-992.	2.2	11
120	Self-triggered leader-following consensus of multi-agent systems with input time delay. Neurocomputing, 2019, 330, 70-77.	3.5	80
121	Second-order controllability of two-time-scale multi-agent systems. Applied Mathematics and Computation, 2019, 343, 299-313.	1.4	56
122	Quantized Consensus of Multi-Agent Networks With Sampled Data and Markovian Interaction Links. IEEE Transactions on Cybernetics, 2019, 49, 1816-1825.	6.2	31
123	Secondâ€order controllability of twoâ€ŧime‣cale discreteâ€ŧime multiâ€agent systems. IET Control Theory and Applications, 2019, 13, 2356-2364.	1.2	5
124	Reaching Non-Negative Edge Consensus of Networked Dynamical Systems. IEEE Transactions on Cybernetics, 2018, 48, 2712-2722.	6.2	35
125	Event-Triggered Control for Consensus Problem in Multi-Agent Systems With Quantized Relative State Measurements and External Disturbance. IEEE Transactions on Circuits and Systems I: Regular Papers, 2018, 65, 2232-2242.	3.5	242
126	Observer-Based Robust Coordinated Control of Multiagent Systems With Input Saturation. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29, 1933-1946.	7.2	71

#	Article	IF	CITATIONS
127	Discrete-Time Positive Edge-Consensus for Undirected and Directed Nodal Networks. IEEE Transactions on Circuits and Systems II: Express Briefs, 2018, 65, 221-225.	2.2	48
128	Robust semiglobal swarm tracking of coupled harmonic oscillators with input saturation and external disturbance. International Journal of Robust and Nonlinear Control, 2018, 28, 1566-1582.	2.1	13
129	Eventâ€based asynchronous communication and sampled control for synchronization of multiagent networks with input saturation. International Journal of Robust and Nonlinear Control, 2018, 28, 1871-1885.	2.1	4
130	Adaptive Leader-Follower Flocking for Uncertain Lagrange Systems with Input Saturation and External Disturbances. , 2018, , .		3
131	Leaderâ€following consensus of general linear fractionalâ€order multiagent systems with input delay via eventâ€triggered control. International Journal of Robust and Nonlinear Control, 2018, 28, 5717-5729.	2.1	32
132	Positive Edge Consensus of Complex Networks. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2018, 48, 2242-2250.	5.9	93
133	Group controllability of two-time-scale multi-agent networks. Journal of the Franklin Institute, 2018, 355, 6045-6061.	1.9	50
134	Fullâ€order sliding mode control for finiteâ€time attitude tracking of rigid spacecraft. IET Control Theory and Applications, 2018, 12, 1086-1094.	1.2	33
135	A Brief Overview of Flocking Control for Multi-agent Systems. Lecture Notes in Computer Science, 2018, , 48-58.	1.0	3
136	Group controllability of continuousâ€ŧime multiâ€agent systems. IET Control Theory and Applications, 2018, 12, 1665-1671.	1.2	24
137	Event-triggered consensus tracking for fractional-order multi-agent systems with general linear models. Neurocomputing, 2018, 315, 292-298.	3.5	26
138	Nonnegative Edge Quasi-Consensus of Networked Dynamical Systems. IEEE Transactions on Circuits and Systems II: Express Briefs, 2017, 64, 304-308.	2.2	46
139	General Lyapunov Functions for Consensus of Nonlinear Multiagent Systems. IEEE Transactions on Circuits and Systems II: Express Briefs, 2017, 64, 1232-1236.	2.2	33
140	Semi-global output consensus of discrete-time multi-agent systems with input saturation and external disturbances. ISA Transactions, 2017, 67, 131-139.	3.1	79
141	Distributed estimation and control for two-target tracking mobile sensor networks. Journal of the Franklin Institute, 2017, 354, 2994-3007.	1.9	34
142	Semiâ€global leaderâ€following consensus of discreteâ€time linear multiâ€agent systems subject to actuator position and rate saturation. International Journal of Robust and Nonlinear Control, 2017, 27, 2921-2936.	2.1	6
143	Distributed estimation and control of mobile sensor networks based only on position measurements. IET Control Theory and Applications, 2017, 11, 1627-1633.	1.2	16
144	Fully Distributed Event-Triggered Semiglobal Consensus of Multi-agent Systems With Input Saturation. IEEE Transactions on Industrial Electronics, 2017, 64, 5055-5064.	5.2	194

#	Article	IF	CITATIONS
145	On decentralized adaptive full-order sliding mode control of multiple UAVs. ISA Transactions, 2017, 71, 196-205.	3.1	120
146	Desensitized cubature Kalman filter with uncertain parameters. Journal of the Franklin Institute, 2017, 354, 8358-8373.	1.9	10
147	Observer-Based Discrete-Time Nonnegative Edge Synchronization of Networked Systems. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28, 2446-2455.	7.2	65
148	Event-triggered Kalman-consensus filter for two-target tracking sensor networks. ISA Transactions, 2017, 71, 103-111.	3.1	29
149	Eventâ€triggered consensus of nonâ€linear multiâ€agent systems with sampling data and time delay. IET Control Theory and Applications, 2017, 11, 1715-1725.	1.2	33
150	Edge consensus on complex networks: a structural analysis. International Journal of Control, 2017, 90, 1584-1596.	1.2	10
151	Semiâ€global consensus with position limited and rate disturbances via low gain feedback and integral sliding mode control. IET Control Theory and Applications, 2017, 11, 1173-1183.	1.2	3
152	Distributed Bounds on the Algebraic Connectivity of Graphs With Application to Agent Networks. IEEE Transactions on Cybernetics, 2017, 47, 2121-2131.	6.2	24
153	Robust Semi-global Coordinated Tracking of Saturated Networked Systems * *This work was supported by the National Natural Science Foundation of China under Grant Nos. 61374176, 61473129 and 61374160, the Science Fund for Creative Research Groups of the National Natural Science Foundation of China (Nos. 61521063). IFAC-PapersOnline, 2017, 50, 8303-8308	0.5	4
154	Control of Networked Systems with Engineering Applications. Mathematical Problems in Engineering, 2016, 2016, 1-2.	0.6	0
155	Improved exponential observer design for oneâ€sided Lipschitz nonlinear systems. International Journal of Robust and Nonlinear Control, 2016, 26, 3958-3973.	2.1	70
156	Fault detection and identification for a class of nonlinear systems with model uncertainty. Applied Mathematical Modelling, 2016, 40, 7368-7381.	2.2	6
157	Swarming of heterogeneous multi-agent systems with periodically intermittent control. Neurocomputing, 2016, 207, 213-219.	3.5	22
158	Distributed estimation and control for mobile sensor networks with coupling delays. ISA Transactions, 2016, 64, 141-150.	3.1	35
159	Finite-time consensus of second-order multi-agent systems via a structural approach. Journal of the Franklin Institute, 2016, 353, 3876-3896.	1.9	19
160	A weighted adaptive-velocity self-organizing model and its high-speed performance. Neurocomputing, 2016, 216, 402-408.	3.5	11
161	Group controllability of discrete-time multi-agent systems. Journal of the Franklin Institute, 2016, 353, 3524-3559.	1.9	35

Nonnegative edge consensus of networked linear systems. , 2016, , .

5

#	Article	IF	CITATIONS
163	Semi-global and global containment control of multi-agent systems with second-order dynamics and input saturation. International Journal of Robust and Nonlinear Control, 2016, 26, 3460-3480.	2.1	60
164	Second-Order Consensus of Multi-agent Systems via Periodically Intermittent Pinning Control. Circuits, Systems, and Signal Processing, 2016, 35, 2413-2431.	1.2	25
165	Observer-based semi-global consensus of discrete-time multi-agent systems with input saturation. Transactions of the Institute of Measurement and Control, 2016, 38, 665-674.	1.1	30
166	An overview of coordinated control for multi-agent systems subject to input saturation. Perspectives in Science, 2016, 7, 133-139.	0.6	20
167	Consensus networks with time-delays over finite fields. International Journal of Control, 2016, 89, 1000-1008.	1.2	17
168	Consensus networks with switching topology and time-delays over finite fields. Automatica, 2016, 68, 39-43.	3.0	50
169	Stabilizing Solution and Parameter Dependence of Modified Algebraic Riccati Equation With Application to Discrete-Time Network Synchronization. IEEE Transactions on Automatic Control, 2016, 61, 228-233.	3.6	96
170	Flocking of networked Euler–Lagrange systems with uncertain parameters and time-delays under directed graphs. Nonlinear Dynamics, 2016, 85, 415-424.	2.7	26
171	A Switching Approach to Designing Finite-Time Synchronization Controllers of Coupled Neural Networks. IEEE Transactions on Neural Networks and Learning Systems, 2016, 27, 471-482.	7.2	140
172	Cluster consensus for second-order mobile multi-agent systems via distributed adaptive pinning control under directed topology. Nonlinear Dynamics, 2016, 83, 1975-1985.	2.7	30
173	Distributed adaptive containment for linear multi-agent systems using output information. , 2015, , .		1
174	Coordinated Control and Estimation of Multiagent Systems with Engineering Applications. Mathematical Problems in Engineering, 2015, 2015, 1-2.	0.6	0
175	Editorial: Coâ€operative Multiâ€Agent Systems with Engineering Applications. IET Control Theory and Applications, 2015, 9, 309-311.	1.2	9
176	Self-triggered based semi-global consensus tracking of multi-agent systems with input saturation. , 2015, , .		2
177	Clobal bounded consensus of general nonidentical networks with distributed time-delays. , 2015, , .		1
178	Observer-based robust coordinated tracking of multi-agent systems with input saturation. , 2015, , .		2
179	A Control Lyapunov Function Approach to Stabilization of Affine Nonlinear Systems with Bounded Uncertain Parameters. Circuits, Systems, and Signal Processing, 2015, 34, 341-352.	1.2	4
180	Flocking of partially-informed multi-agent systems avoiding obstacles with arbitrary shape. Autonomous Agents and Multi-Agent Systems, 2015, 29, 943-972.	1.3	10

#	Article	IF	CITATIONS
181	Multiâ€egent containment control with input saturation on switching topologies. IET Control Theory and Applications, 2015, 9, 399-409.	1.2	106
182	Eventâ€based synchronisation of linear discreteâ€ŧime dynamical networks. IET Control Theory and Applications, 2015, 9, 755-765.	1.2	79
183	Containment for linear multi-agent systems with exogenous disturbances. Neurocomputing, 2015, 160, 206-212.	3.5	31
184	Improved results on generalised robust H â^ž filtering for Lipschitz descriptor nonâ€linear systems with uncertainties. IET Control Theory and Applications, 2015, 9, 2107-2114.	1.2	10
185	Global coordinated tracking of multi-agent systems with disturbance uncertainties via bounded control inputs. Nonlinear Dynamics, 2015, 82, 2059-2068.	2.7	24
186	Containment control for coupled harmonic oscillators with multiple leaders under directed topology. International Journal of Control, 2015, 88, 248-255.	1.2	32
187	Unknown input observer design for one-sided Lipschitz nonlinear systems. Nonlinear Dynamics, 2015, 79, 1469-1479.	2.7	120
188	Semi-global containment control of multi-agent systems with intermittent input saturation. Journal of the Franklin Institute, 2015, 352, 3504-3525.	1.9	90
189	Robust semi-global coordinated tracking of linear multi-agent systems with input saturation. International Journal of Robust and Nonlinear Control, 2015, 25, 2375-2390.	2.1	94
190	Modeling and Control of Complex Networked Systems. Mathematical Problems in Engineering, 2014, 2014, 1-2.	0.6	0
191	Event-triggered tracking control for discrete-time multi-agent systems. IMA Journal of Mathematical Control and Information, 2014, 31, 165-182.	1.1	13
192	Swarm aggregations of heterogeneous multi-agent systems. International Journal of Control, 2014, 87, 2594-2603.	1.2	4
193	Semiâ€global containment control of multiâ€agent systems with input saturation. IET Control Theory and Applications, 2014, 8, 2229-2237.	1.2	43
194	Necessary and sufficient conditions for distributed containment control of multiâ€agent systems without velocity measurement. IET Control Theory and Applications, 2014, 8, 1752-1759.	1.2	49
195	A Single-Leader Servo Approach to Multi-Agent Consensus Problems. , 2014, , .		0
196	Consensus of edge dynamics on directed multi-agent systems. , 2014, , .		7
197	Pinning-like adaptive second-order consensus for networked mobile agents with heterogeneous nonlinear dynamics. , 2014, , .		0
198	Reduced-order observer design for one-sided lipschitz nonlinear systems with unknown inputs. , 2014,		3

12

,.

#	Article	IF	CITATIONS
199	Adaptive synchronization for nonlinear coupled complex network with nonidentical nodes. , 2014, , .		1
200	Switching controllability of discrete-time multi-agent systems with multiple leaders and time-delays. Applied Mathematics and Computation, 2014, 228, 571-588.	1.4	56
201	Adaptive Synchronization of Complex Dynamical Networks with Time-Varying Delays. Circuits, Systems, and Signal Processing, 2014, 33, 1173-1188.	1.2	23
202	Pinning control of complex networked systems: A decade after and beyond. Annual Reviews in Control, 2014, 38, 103-111.	4.4	80
203	Semiglobal Observer-Based Leader-Following Consensus With Input Saturation. IEEE Transactions on Industrial Electronics, 2014, 61, 2842-2850.	5.2	265
204	Coordinated obstacle avoidance with reduced interaction. Neurocomputing, 2014, 139, 233-245.	3.5	10
205	Nonlinear <mml:math <br="" altimg="si0002.gif" xmlns:mml="http://www.w3.org/1998/Math/MathML">overflow="scroll"><mml:msub><mml:mrow><mml:mi mathvariant="script">H</mml:mi </mml:mrow><mml:mrow><mml:mo>â^ž</mml:mo></mml:mrow>observer design for one-sided Lipschitz systems. Neurocomputing, 2014, 145, 505-511.</mml:msub></mml:math>	b>∛/mml:ı	math>
206	Adaptive consensus with a virtual leader of multiple agents governed by locally Lipschitz nonlinearity. International Journal of Robust and Nonlinear Control, 2013, 23, 978-990.	2.1	60
207	Adaptive second-order consensus of multi-agent systems with heterogeneous nonlinear dynamics and time-varying delays. Neurocomputing, 2013, 118, 289-300.	3.5	68
208	Observer-Based H â^ž Synchronization and Unknown Input Recovery for a Class of Digital Nonlinear Systems. Circuits, Systems, and Signal Processing, 2013, 32, 2867-2881.	1.2	26
209	Computation of Upper Bounds for the Solution of Continuous Algebraic Riccati Equations. Circuits, Systems, and Signal Processing, 2013, 32, 1477-1488.	1.2	7
210	Flocking of multiple autonomous agents with preserved network connectivity and heterogeneous nonlinear dynamics. Neurocomputing, 2013, 115, 169-177.	3.5	37
211	Second-order leader-following consensus of multi-agent systems with nonlinear dynamics and time delay via periodically intermittent pinning control. , 2013, , .		2
212	Semi-Global Leader-Following Consensus of Linear Multi-Agent Systems With Input Saturation via Low Gain Feedback. IEEE Transactions on Circuits and Systems I: Regular Papers, 2013, 60, 1881-1889.	3.5	450
213	Distributed Pinning-Controlled Second-Order Consensus of Multi-Agent Systems. , 2013, , 61-101.		0
214	Adaptive flocking with a virtual leader of multiple agents governed by locally Lipschitz nonlinearity. Nonlinear Analysis: Real World Applications, 2013, 14, 798-806.	0.9	73
215	Adaptive Synchronization of Complex Dynamical Networks Governed by Local Lipschitz Nonlinearlity on Switching Topology. Journal of Applied Mathematics, 2013, 2013, 1-7.	0.4	6
216	Adaptive cluster synchronisation of coupled harmonic oscillators with multiple leaders. IET Control Theory and Applications, 2013, 7, 765-772.	1.2	35

#	Article	IF	CITATIONS
217	Controllability of Second-Order Multiagent Systems with Multiple Leaders and General Dynamics. Mathematical Problems in Engineering, 2013, 2013, 1-6.	0.6	8
218	Distributed algorithms for shape sculpting of lattice-arrayed modular robots via hole motion. , 2013, ,		0
219	Decentralized Adaptive Pinning Control for Cluster Synchronization of Complex Dynamical Networks, IFEE Transactions on Cybernetics, 2013, 43, 394-399 Distributed Leader-following Swarm of Heterogeneous, Multi-agent Systems* *This work is supported	6.2	241
220	by the National Natural Science Foundation of China under Grant Nos. 61074125, 61104140, 61004093, and 61073102, the Science Fund for Creative Research Groups of the National Natural Science Foundation of China (No. 61221003), the National Key Basic Research Program (973 Program) of China (No. 2010CB731403), the Research Fund for the Doctoral program of Higher Education (REDP) under Grant No. 20100142120023, and JEAC Postprint Volumes IPPV (International Federation of Automatic	0.4	0
221	Co Pinning Control of Complex Networked Systems. , 2013, , .		62
222	Distributed Pinning-Controlled Consensus in a Heterogeneous Influence Network. , 2013, , 103-110.		1
223	Distributed Pinning-Controlled Flocking with Preserved Network Connectivity. , 2013, , 137-160.		0
224	Distributed Pinning-Controlled Flocking with a Virtual Leader. , 2013, , 111-136.		1
225	Flocking in Multi-Agent Systems with Multiple Virtual Leaders Based Only on Position Measurements. Communications in Theoretical Physics, 2012, 57, 801-807.	1.1	24
226	Controllability of Discrete-Time Multi-Agent Systems with Multiple Leaders on Fixed Networks. Communications in Theoretical Physics, 2012, 58, 856-862.	1.1	18
227	Adaptive group consensus of coupled harmonic oscillators with multiple leaders. , 2012, , .		1
228	Non-linear observer design for one-sided Lipschitz systems: an linear matrix inequality approach. IET Control Theory and Applications, 2012, 6, 1297.	1.2	111
229	A Connectivity-preserving flocking algorithm for multi-agent dynamical systems with bounded potential function. IET Control Theory and Applications, 2012, 6, 813.	1.2	87
230	Full-order and reduced-order observers for one-sided Lipschitz nonlinear systems using Riccati equations. Communications in Nonlinear Science and Numerical Simulation, 2012, 17, 4968-4977.	1.7	137
231	Controllability of switching networks of multiâ€agent systems. International Journal of Robust and Nonlinear Control, 2012, 22, 630-644.	2.1	63
232	A Note on Observers for Discrete-Time Lipschitz Nonlinear Systems. IEEE Transactions on Circuits and Systems II: Express Briefs, 2012, 59, 123-127.	2.2	88
233	Adaptive second-order consensus of networked mobile agents with nonlinear dynamics. Automatica, 2011, 47, 368-375.	3.0	471
234	Rendezvous of multiple mobile agents with preserved network connectivity. Systems and Control Letters, 2010, 59, 313-322.	1.3	241

#	Article	IF	CITATIONS
235	On decentralized adaptive pinning synchronization of complex dynamical networks. , 2010, , .		7
236	Synchronization of coupled harmonic oscillators in a dynamic proximity network. Automatica, 2009, 45, 2286-2291.	3.0	178
237	Flocking of Multi-Agents With a Virtual Leader. IEEE Transactions on Automatic Control, 2009, 54, 293-307.	3.6	778
238	A connectivity-preserving flocking algorithm for multi-agent systems based only on position measurements. International Journal of Control, 2009, 82, 1334-1343.	1.2	155
239	Flocking in multiâ€agent systems with multiple virtual leaders. Asian Journal of Control, 2008, 10, 238-245.	1.9	110
240	Coordinated Control of Multiple Mobile Agents with Connectivity Preserving. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2008, 41, 3725-3730.	0.4	5