Harold E Burkhart

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/589929/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A retrospective comparison of carrying capacity of two generations of loblolly pine plantations. Forest Ecology and Management, 2022, 504, 119834.	3.2	5
2	Stem taper functions for Betula platyphylla in the Daxing'an Mountains, northeast China. Journal of Forestry Research, 2021, 32, 529-541.	3.6	7
3	Enhancing the precision of broad-scale forestland removals estimates with small area estimation techniques. Forestry, 2021, 94, 427-441.	2.3	11
4	Model-Based Growth Comparisons between Loblolly and Slash Pine and between Silvicultural Intensities in East Texas. Forests, 2021, 12, 1611.	2.1	2
5	Robustness of Parametric and Nonparametric Fitting Procedures of Tree-Stem Taper with Alternative Definitions for Validation Data. Journal of Forestry, 2020, 118, 576-583.	1.0	7
6	A novel application of small area estimation in loblolly pine forest inventory. Forestry, 2020, 93, 444-457.	2.3	10
7	Auxiliary information resolution effects on small area estimation in plantation forest inventory. Forestry, 2020, 93, 685-693.	2.3	3
8	Plantation Loblolly Pine Seedling Counts with Unmanned Aerial Vehicle Imagery: A Case Study. Journal of Forestry, 2020, 118, 487-500.	1.0	4
9	Evaluation of total tree height subsampling strategies for estimating volume in loblolly pine plantations. Forest Ecology and Management, 2020, 461, 117878.	3.2	6
10	Site index estimation for clonal eucalypt plantations in Brazil: A modeling approach refined by environmental variables. Forest Ecology and Management, 2020, 466, 118079.	3.2	12
11	Effects of early pruning on ring specific gravity in young loblolly pine trees. Wood and Fiber Science, 2020, 52, 139-151.	0.6	4
12	Modeling whole-stand survival in clonal eucalypt stands in Brazil as a function of water availability. Forest Ecology and Management, 2019, 432, 1002-1012.	3.2	19
13	Stand-level growth and yield model system for clonal eucalypt plantations in Brazil that accounts for water availability. Forest Ecology and Management, 2019, 448, 22-33.	3.2	12
14	Yield pattern of eucalypt clones across tropical Brazil: An approach to clonal grouping. Forest Ecology and Management, 2019, 432, 30-39.	3.2	13
15	Comparison of volume and stand table estimates with alternate methods for selecting measurement trees in point samples. Forestry, 2019, 92, 42-51.	2.3	3
16	Generalized stem taper and tree volume equations applied to eucalyptus of varying genetics in Brazil. Canadian Journal of Forest Research, 2019, 49, 447-462.	1.7	11
17	Eucalyptus growth and yield system: Linking individual-tree and stand-level growth models in clonal Eucalypt plantations in Brazil. Forest Ecology and Management, 2019, 432, 1-16.	3.2	35
18	Growth-Density Relationships in Loblolly Pine Plantations. Forest Science, 2019, 65, 250-264.	1.0	13

#	Article	IF	CITATIONS
19	Regional Simulations of Loblolly Pine Productivity with CO2 Enrichment and Changing Climate Scenarios. Forest Science, 2018, 64, 349-357.	1.0	14
20	Does commercial thinning improve stand-level growth of the three most commercially important softwood forest types in North America?. Forest Ecology and Management, 2018, 409, 683-693.	3.2	34
21	Tree-level growth and survival following commercial thinning of four major softwood species in North America. Forest Ecology and Management, 2018, 427, 355-364.	3.2	35
22	Estimation of carrying capacity in loblolly pine (Pinus taeda L.). Forest Ecology and Management, 2017, 385, 167-176.	3.2	14
23	Incorporating rainfall data to better plan eucalyptus clones deployment in eastern Brazil. Forest Ecology and Management, 2017, 391, 145-153.	3.2	26
24	Post-thinning density and fertilization affect Pinus taeda stand and individual tree growth. Forest Ecology and Management, 2017, 396, 207-216.	3.2	25
25	An assessment of potential of hybrid poplar for planting in the Virginia Piedmont. New Forests, 2017, 48, 479-490.	1.7	2
26	A new model of tropical tree diameter growth rate and its application to identify fast-growing native tree species. Forest Ecology and Management, 2017, 400, 578-586.	3.2	13
27	Effects of Measurement Error in Total Tree Height and Upper-Stem Diameter on Stem Volume Prediction. Forest Science, 2017, 63, 250-260.	1.0	17
28	Leveraging 35 years of <i>Pinus taeda</i> research in the southeastern US to constrain forest carbon cycle predictions: regional data assimilation using ecosystem experiments. Biogeosciences, 2017, 14, 3525-3547.	3.3	36
29	Modeling dominant height growth of eucalyptus plantations with parameters conditioned to climatic variations. Forest Ecology and Management, 2016, 380, 182-195.	3.2	22
30	Comments on three comparative analyses of stem taper models published in Journal of Mountain Science in 2014–2016. Journal of Mountain Science, 2016, 13, 534-535.	2.0	3
31	Modeling Clustered Survival Times of Loblolly Pine with Time-dependent Covariates and Shared Frailties. Journal of Agricultural, Biological, and Environmental Statistics, 2016, 21, 92-110.	1.4	2
32	On the Use of Upper Stem Diameters to Localize a Segmented Taper Equation to New Trees. Forest Science, 2015, 61, 411-423.	1.0	28
33	Modeling Stand-Level Mortality of Loblolly Pine (Pinus taeda L.) Using Stand, Climate, and Soil Variables. Forest Science, 2015, 61, 834-846.	1.0	13
34	Complex Forest Ecosystems: From Tree to Landscape. Forest Science, 2015, 61, 409-410.	1.0	1
35	Whole-Tree Bark and Wood Properties of Loblolly Pine from Intensively Managed Plantations. Forest Science, 2015, 61, 55-66.	1.0	17
36	General response functions to silvicultural treatments in loblolly pine plantations. Canadian Journal of Forest Research, 2015, 45, 252-265.	1.7	22

#	Article	IF	CITATIONS
37	Survival Analysis of Loblolly Pine Trees With Spatially Correlated Random Effects. Journal of the American Statistical Association, 2015, 110, 486-502.	3.1	12
38	A comparison of alternative data sources for modeling site index in loblolly pine plantations. Canadian Journal of Forest Research, 2015, 45, 1026-1033.	1.7	8
39	Local and general above-stump biomass functions for loblolly pine and slash pine trees. Forest Ecology and Management, 2014, 334, 254-276.	3.2	55
40	Predicting site index of plantation loblolly pine from biophysical variables. Forest Ecology and Management, 2014, 326, 142-156.	3.2	66
41	Modulus of elasticity declines with decreasing planting density for loblolly pine (Pinus taeda) plantations. Annals of Forest Science, 2013, 70, 743-750.	2.0	7
42	Comparison of maximum size–density relationships based on alternate stand attributes for predicting tree numbers and stand growth. Forest Ecology and Management, 2013, 289, 404-408.	3.2	33
43	Extending a Model System to Predict Biomass in Mixed-Species Southern Appalachian Hardwood Forests. Southern Journal of Applied Forestry, 2013, 37, 122-126.	0.3	1
44	Relating Quantity, Quality, and Value of Lumber to Planting Density for Loblolly Pine Plantations. Southern Journal of Applied Forestry, 2013, 37, 97-101.	0.3	8
45	Height and Diameter Relationships and Distributions in Loblolly Pine Stands of Enhanced Genetic Material. Forest Science, 2013, 59, 278-289.	1.0	7
46	Modeling Height Development of Loblolly Pine Genetic Varieties. Forest Science, 2013, 59, 267-277.	1.0	4
47	Modeling the Effects of Initial Spacing on Stand Basal Area Development of Loblolly Pine. Forest Science, 2012, 58, 95-105.	1.0	4
48	Development of Planting Densityâ€Specific Density Management Diagrams for Loblolly Pine. Southern Journal of Applied Forestry, 2012, 36, 126-129.	0.3	11
49	Regional Locale and Its Influence on the Prediction of Loblolly Pine Diameter Distributions. Southern Journal of Applied Forestry, 2012, 36, 198-203.	0.3	4
50	Rotation-Age Results from a Loblolly Pine Spacing Trial. Southern Journal of Applied Forestry, 2012, 36, 11-18.	0.3	29
51	Competition among loblolly pine trees: Does genetic variability of the trees in a stand matter?. Forest Ecology and Management, 2012, 263, 122-130.	3.2	9
52	Modeling Forest Trees and Stands. , 2012, , .		367
53	Growth of young loblolly pine trees following pruning. Forest Ecology and Management, 2011, 262, 2338-2343.	3.2	17
54	A biologically-consistent stand growth model for loblolly pine in the Piedmont physiographic region, USA. Forest Ecology and Management, 2011, 262, 2035-2041.	3.2	29

#	Article	IF	CITATIONS
55	Implementing Regional Locale and Thinning Response in the Loblolly Pine Height-Diameter Relationship. Southern Journal of Applied Forestry, 2010, 34, 21-27.	0.3	16
56	Does Row Orientation Affect the Growth of Loblolly Pine Plantations?. Southern Journal of Applied Forestry, 2009, 33, 77-80.	0.3	4
57	Accuracy of Subsampling for Height Measurements in Loblolly Pine Plots. Southern Journal of Applied Forestry, 2009, 33, 145-149.	0.3	3
58	Modeling production and decay of coarse woody debris in loblolly pine plantations. Forest Ecology and Management, 2009, 257, 790-799.	3.2	43
59	A framework for modeling the dynamics of first-order branches and spatial distribution of knots in loblolly pine trees. Canadian Journal of Forest Research, 2009, 39, 566-579.	1.7	24
60	Biomass partitioning in a miniature-scale loblolly pine spacing trial. Canadian Journal of Forest Research, 2009, 39, 320-329.	1.7	18
61	Comparing strategies for modeling tree diameter percentiles from remeasured plots. Environmetrics, 2008, 19, 529-548.	1.4	30
62	Modeling trends in stem quality characteristics of loblolly pine trees in unthinned plantations. Canadian Journal of Forest Research, 2008, 38, 1446-1457.	1.7	5
63	Absolute and relative changes in tree growth rates and changes to the stand diameter distribution of <i>Pinus taeda</i> as a result of midrotation fertilizer applications. Canadian Journal of Forest Research, 2008, 38, 2063-2071.	1.7	11
64	Worldwide Forest Mensuration History. Forest Science, 2008, 54, 123-124.	1.0	0
65	Regional mixed-effects height–diameter models for loblolly pine (Pinus taeda L.) plantations. European Journal of Forest Research, 2007, 126, 253-262.	2.5	76
66	Modeling the impact of thinning on height development of dominant and codominant loblolly pine trees. Annals of Forest Science, 2006, 63, 349-354.	2.0	42
67	The Effect of Physiographic Region and Geographic Locale on Predicting the Dominant Height and Basal Area of Loblolly Pine Plantations. Southern Journal of Applied Forestry, 2006, 30, 147-153.	0.3	18
68	Juvenile diameter distributions of loblolly pine characterized by the two-parameter Weibull function. New Forests, 2005, 29, 233-244.	1.7	18
69	The Influence of Thinning on the Proportion of Peeler, Sawtimber, and Pulpwood Trees in Loblolly Pine Plantations. Southern Journal of Applied Forestry, 2005, 29, 158-162.	0.3	10
70	Modeling dominant height growth of radiata pine (Pinus radiata D. Don) plantations in north-western Spain. Forest Ecology and Management, 2005, 215, 271-284.	3.2	71
71	A Proposed Model for Deadwood C Production and Decay in Loblolly Pine Plantations. Environmental Management, 2004, 33, S56.	2.7	9
72	Forest stand dynamics and similarity theory. Ecological Modelling, 2003, 167, 165-180.	2.5	10

#	Article	IF	CITATIONS
73	Conditioning a distance-dependent competition index to indicate the onset of inter-tree competition. Forest Ecology and Management, 2003, 175, 17-30.	3.2	44
74	Using miniature-scale plantations as experimental tools for assessing sustainability issues. Canadian Journal of Forest Research, 2003, 33, 450-454.	1.7	6
75	Equations for Predicting Green Weight of Loblolly Pine Trees in the South. Southern Journal of Applied Forestry, 2003, 27, 153-159.	0.3	41
76	Predicting survival and growth rates for individual loblolly pine trees from light capture estimates. Canadian Journal of Forest Research, 2002, 32, 1970-1983.	1.7	18
77	Spacing rectangularity effect on the growth of loblolly pine plantations. Canadian Journal of Forest Research, 2002, 32, 1451-1459.	1.7	22
78	Addressing multi-use issues in sustainable forest management with signal-transfer modeling. Forest Ecology and Management, 2002, 165, 295-304.	3.2	8
79	Top height definition and its effect on site index determination in thinned and unthinned loblolly pine plantations. Forest Ecology and Management, 2002, 168, 163-175.	3.2	68
80	Modeling the Effect of Density on the Growth of Loblolly Pine Trees. Southern Journal of Applied Forestry, 2002, 26, 124-133.	0.3	41
81	Incorporating Thinning Response into a Loblolly Pine Stand Simulator. Southern Journal of Applied Forestry, 2001, 25, 159-164.	0.3	12
82	Title is missing!. Environmental Modeling and Assessment, 2000, 5, 125-137.	2.2	10
83	Population density influences assessment and application of site index. Canadian Journal of Forest Research, 2000, 30, 1472-1475.	1.7	47
84	Projecting the Growth of Loblolly Pine in a Changing Atmosphere. Southern Journal of Applied Forestry, 1999, 23, 212-216.	0.3	9
85	An application of mixed effects analysis to modeling thinning effects on stem profile of loblolly pine. Forest Ecology and Management, 1998, 103, 87-101.	3.2	44
86	Modeling tree growth in fertilized midrotation loblolly pine plantations. Forest Ecology and Management, 1998, 107, 213-229.	3.2	39
87	A comparison of methods for edge-bias compensation. Canadian Journal of Forest Research, 1998, 28, 942-945.	1.7	34
88	Modeling survival in juvenile and mature loblolly pine plantations. Forest Ecology and Management, 1997, 90, 51-58.	3.2	25
89	The Influence of Thinning on Tree Height and Diameter Relationships in Loblolly Pine Plantations. Southern Journal of Applied Forestry, 1997, 21, 199-205.	0.3	44
90	Volume and Taper Equations for Thinned and Unthinned Loblolly Pine Trees in Cutover, Site-Prepared Plantations. Southern Journal of Applied Forestry, 1997, 21, 146-152.	0.3	56

#	Article	IF	CITATIONS
91	Modeling individual tree growth for juvenile loblolly pine plantations. Forest Ecology and Management, 1996, 89, 157-172.	3.2	30
92	A Comparison of Loblolly Pine Plantation Growth and Yield Models for Inventory Updating. Southern Journal of Applied Forestry, 1996, 20, 15-22.	0.3	18
93	Impact of Heavy Glaze in a Loblolly Pine Spacing Trial. Southern Journal of Applied Forestry, 1996, 20, 151-155.	0.3	29
94	Projecting Crown Measures for Loblolly Pine Trees Using a Generalized Thinning Response Function. Forest Science, 1995, 41, 43-53.	1.0	30
95	11 Forest biometrics. Handbook of Statistics, 1994, 12, 377-407.	0.6	4
96	Modeling the diameter and locational distribution of branches within the crowns of loblolly pine trees in unthinned plantations. Canadian Journal of Forest Research, 1994, 24, 2362-2376.	1.7	39
97	Dynamics of size-variable distribution parameters in juvenile loblolly pine (Pinus taeda L.) stands. Forest Ecology and Management, 1993, 58, 321-347.	3.2	7
98	Modeling survival of loblolly pine trees in thinned and unthinned plantations. Canadian Journal of Forest Research, 1992, 22, 1878-1882.	1.7	27
99	Predicting impact of southern pine beetle infestations on rotation-age yield of loblolly pine stands. Forest Ecology and Management, 1992, 47, 261-268.	3.2	0
100	Scientific visualization for the study and use of forest stand simulators. Landscape and Urban Planning, 1992, 21, 317-318.	7.5	4
101	Estimating dry weight of dormant-season foliage of loblolly pine. Biomass and Bioenergy, 1992, 3, 319-322.	5.7	5
102	An examination of spacing indices for Eucalyptusgrandis. Canadian Journal of Forest Research, 1990, 20, 1909-1916.	1.7	17
103	Product-Class Proportions for Thinned and Unthinned Loblolly Pine Plantations. Southern Journal of Applied Forestry, 1989, 13, 192-195.	0.3	8
104	Diameter Increment and Survival Equations for Loblolly Pine Trees Growing in Thinned and Unthinned Plantations on Cutover, Site-Prepared Lands. Southern Journal of Applied Forestry, 1989, 13, 170-174.	0.3	26
105	A stand-level multispecies growth model for Appalachian hardwoods. Canadian Journal of Forest Research, 1989, 19, 405-412.	1.7	23
106	Individual tree merchantable volume to total volume ratios based on geometric solids. Canadian Journal of Forest Research, 1989, 19, 679-683.	1.7	4
107	An integrated system of forest stand models. Forest Ecology and Management, 1988, 23, 159-177.	3.2	47
108	Compatible crown ratio and crown height models: Reply. Canadian Journal of Forest Research, 1988, 18, 825-826.	1.7	0

#	Article	IF	CITATIONS
109	Compatible crown ratio and crown height models. Canadian Journal of Forest Research, 1987, 17, 572-574.	1.7	52
110	Relationships between tree crown, stem, and stand characteristics in unthinned loblolly pine plantations. Canadian Journal of Forest Research, 1987, 17, 534-538.	1.7	53
111	Tree Volume and Taper of Loblolly Pine Varies by Stand Origin. Southern Journal of Applied Forestry, 1987, 11, 185-189.	0.3	6
112	Cubic-Foot Volume Equations for Loblolly Pine Trees in Cutover, Site-Prepared Plantations. Southern Journal of Applied Forestry, 1987, 11, 190-192.	0.3	25
113	A comparison of competition measures for predicting growth of loblolly pine trees. Canadian Journal of Forest Research, 1986, 16, 1230-1237.	1.7	177
114	Variable-form stem profile models for loblolly pine. Canadian Journal of Forest Research, 1986, 16, 109-114.	1.7	34
115	Evaluation of Thinning for Reduction of Losses from Southern Pine Beetle Attack in Loblolly Pine Stands. Southern Journal of Applied Forestry, 1986, 10, 105-108.	0.3	16
116	Yield Relationships in Unthinned Loblolly Pine Plantations on Cutover, Site-Prepared Lands. Southern Journal of Applied Forestry, 1985, 9, 84-91.	0.3	47
117	Site Index Curves for Loblolly Pine Plantations on Cutover Site-Prepared Lands. Southern Journal of Applied Forestry, 1985, 9, 166-169.	0.3	28
118	Computer Corner: Computer Packages and Statistical Analyses. Northern Journal of Applied Forestry, 1985, 2, 99-100.	0.5	1
119	Stem Volume and Taper Functions for Yellow-Poplar in the Southern Appalachians. Southern Journal of Applied Forestry, 1984, 8, 185-188.	0.3	13
120	A simulation study assessing the effect of sampling for predictor variable values on estimates of yield. Canadian Journal of Forest Research, 1984, 14, 326-330.	1.7	9
121	Predicting Mortality After Thinning in Old-field Loblolly Pine Plantations. Southern Journal of Applied Forestry, 1983, 7, 20-23.	0.3	6
122	Cubic-Foot Volume of Loblolly Pine to Any Height Limit. Southern Journal of Applied Forestry, 1980, 4, 166-168.	0.3	31
123	Allocating inventory resources for multiple-use planning. Canadian Journal of Forest Research, 1978, 8, 100-110.	1.7	35
124	Simulating southern pine beetle activity for pest management decisions. Canadian Journal of Forest Research, 1977, 7, 138-144.	1.7	3
125	Biomass and nitrogen distribution in four 13-year-old loblolly pine plantations in the Hilly Coastal Plain of Alabama: discussion. Canadian Journal of Forest Research, 1977, 7, 545-546.	1.7	0
126	Cubic-Foot Volume of Loblolly Pine to Any Merchantable Top Limit. Southern Journal of Applied Forestry, 1977, 1, 7-9.	0.3	83

#	Article	IF	CITATIONS
127	A Linear Programming Model for Multiple-use Planning. Canadian Journal of Forest Research, 1975, 5, 485-491.	1.7	12