
Maria Pilar Lostao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5898386/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Molecular Basis of Glucose Galactose Malabsorption in a Large Swedish Pedigree. Function, 2021, 2, zqab040.	2.3	4
2	GLUT12 Expression in Brain of Mouse Models of Alzheimer's Disease. Molecular Neurobiology, 2020, 57, 798-805.	4.0	14
3	DHA and its derived lipid mediators MaR1, RvD1 and RvD2 block TNF-α inhibition of intestinal sugar and glutamine uptake in Caco-2 cells. Journal of Nutritional Biochemistry, 2020, 76, 108264.	4.2	11
4	Effect of aging and obesity on GLUT12 expression in small intestine, adipose tissue, muscle, and kidney and its regulation by docosahexaenoic acid and exercise in mice. Applied Physiology, Nutrition and Metabolism, 2020, 45, 957-967.	1.9	6
5	GLUT12 and adipose tissue: Expression, regulation and its relation with obesity in mice. Acta Physiologica, 2019, 226, e13283.	3.8	17
6	GLUT12 expression and regulation in murine small intestine and human Caco-2 cells. Journal of Cellular Physiology, 2019, 234, 4396-4408.	4.1	9
7	Basolateral presence of the proinflammatory cytokine tumor necrosis factor -α and secretions from adipocytes and macrophages reduce intestinal sugar transport. Journal of Cellular Physiology, 2019, 234, 4352-4361.	4.1	6
8	EPA blocks TNFâ€Ì±â€induced inhibition of sugar uptake in Cacoâ€2 cells via GPR120 and AMPK. Journal of Cellular Physiology, 2018, 233, 2426-2433.	4.1	16
9	Cardiotrophinâ€1 decreases intestinal sugar uptake in mice and in <scp>C</scp> acoâ€2 cells. Acta Physiologica, 2016, 217, 217-226.	3.8	11
10	Could GLUT12 be a Potential Therapeutic Target in Cancer Treatment? A Preliminary Report. Journal of Cancer, 2015, 6, 139-143.	2.5	23
11	Functional characterization of the human facilitative glucose transporter 12 (GLUT12) by electrophysiological methods. American Journal of Physiology - Cell Physiology, 2015, 308, C1008-C1022.	4.6	15
12	Fluorescent Nucleoside Derivatives as a Tool for the Detection of Concentrative Nucleoside Transporter Activity Using Confocal Microscopy and Flow Cytometry. Molecular Pharmaceutics, 2015, 12, 2158-2166.	4.6	8
13	Modulation of intestinal L-glutamate transport by luminal leptin. Journal of Physiology and Biochemistry, 2015, 71, 311-317.	3.0	3
14	In vivo regulation of intestinal absorption of amino acids by leptin. Journal of Endocrinology, 2015, 224, 17-23.	2.6	8
15	Expression of the Glucose Transporter GLUT12 in Alzheimer's Disease Patients. Journal of Alzheimer's Disease, 2014, 42, 97-101.	2.6	15
16	Basal leptin regulates amino acid uptake in polarized Caco-2 cells. Journal of Physiology and Biochemistry, 2013, 69, 507-512.	3.0	3
17	Helichrysum and Grapefruit Extracts Inhibit Carbohydrate Digestion and Absorption, Improving Postprandial Glucose Levels and Hyperinsulinemia in Rats. Journal of Agricultural and Food Chemistry, 2013, 61, 12012-12019.	5.2	45
18	TNFα regulates sugar transporters in the human intestinal epithelial cell line Caco-2. Cytokine, 2013, 64, 181-187.	3.2	23

#	Article	IF	CITATIONS
19	The facilitative glucose transporter GLUT12: what do we know and what would we like to know?. Journal of Physiology and Biochemistry, 2013, 69, 325-333.	3.0	18
20	Functional analysis of the human concentrative nucleoside transporter-1 variant hCNT1S546P provides insight into the sodium-binding pocket. American Journal of Physiology - Cell Physiology, 2012, 302, C257-C266.	4.6	12
21	Leptin regulates sugar and amino acids transport in the human intestinal cell line <scp>C</scp> acoâ€2. Acta Physiologica, 2012, 205, 82-91.	3.8	25
22	Further Characterization of the Electrogenicity and pH Sensitivity of the Human Organic Anion-Transporting Polypeptides OATP1B1 and OATP1B3. Molecular Pharmacology, 2011, 79, 596-607.	2.3	39
23	Effects of Na+ and H+ on steady-state and presteady-state currents of the human concentrative nucleoside transporter 3 (hCNT3). Pflugers Archiv European Journal of Physiology, 2010, 460, 617-632.	2.8	6
24	Luminal leptin inhibits l-glutamine transport in rat small intestine: involvement of ASCT2 and BOAT1. American Journal of Physiology - Renal Physiology, 2010, 299, G179-G185.	3.4	43
25	W1578 ASCT2 and B°AT1 Are Involved in Leptin-Sensitive Na+-Dependent L-Glutamine Transport in Rat Small Intestine. Gastroenterology, 2009, 136, A-695.	1.3	0
26	Compensatory effects of the human nucleoside transporters on the response to nucleoside-derived drugs in breast cancer MCF7 cells. Biochemical Pharmacology, 2008, 75, 639-648.	4.4	23
27	Lipopolysaccharide Induces Inhibition of Galactose Intestinal Transport in Rabbits <i>in vitro</i> . Cellular Physiology and Biochemistry, 2008, 22, 715-724.	1.6	18
28	Interaction of nucleosideâ€derivatives with the human Na ⁺ /nucleoside cotransporters CNT1 and CNT3. FASEB Journal, 2008, 22, 133-133.	0.5	1
29	Inhibitory effect of TNF- $\hat{l}\pm$ on the intestinal absorption of galactose. Journal of Cellular Biochemistry, 2007, 101, 99-111.	2.6	27
30	Luminal leptin inhibits intestinal sugar absorption in vivo. Acta Physiologica, 2007, 190, 303-310.	3.8	30
31	Intestinal d-Galactose Transport in an Endotoxemia Model in the Rabbit. Journal of Membrane Biology, 2007, 215, 125-133.	2.1	34
32	Transport of d-galactose by the gastrointestinal tract of the locust, Locusta migratoria. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2006, 143, 20-26.	1.6	9
33	Na+ and pH dependence of proline and beta-alanine absorption in rat small intestine. Acta Physiologica, 2006, 186, 271-278.	3.8	21
34	Characterization of the rat Na+/nucleoside cotransporter 2 and transport of nucleoside-derived drugs using electrophysiological methods. American Journal of Physiology - Cell Physiology, 2006, 291, C1395-C1404.	4.6	16
35	Cell entry and export of nucleoside analogues. Virus Research, 2005, 107, 151-164.	2.2	127
36	Effect of adrenomedullin and proadrenomedullin N-terminal 20 peptide on sugar transport in the rat intestine. Regulatory Peptides, 2005, 129, 147-154.	1.9	11

MARIA PILAR LOSTAO

#	Article	IF	CITATIONS
37	Electrophysiological Characterization of the Human Na+/Nucleoside Cotransporter 1 (hCNT1) and Role of Adenosine on hCNT1 Function. Journal of Biological Chemistry, 2004, 279, 8999-9007.	3.4	41
38	Leptin effect on intestinal galactose absorption in ob/ob and db/db mice. Journal of Physiology and Biochemistry, 2004, 60, 93-97.	3.0	11
39	Involvement of PKC and PKA in the inhibitory effect of leptin on intestinal galactose absorption. Biochemical and Biophysical Research Communications, 2004, 317, 717-721.	2.1	22
40	Interaction of Nucleoside Inhibitors of HIV-1 Reverse Transcriptase with the Concentrative Nucleoside Transporter-1 (Slc28A1). Antiviral Therapy, 2004, 9, 993-1002.	1.0	39
41	Functional expression of the short isoform of the murine leptin receptor Ob-Rc (muB1.219) inXenopus laevis oocytes. Journal of Physiology and Biochemistry, 2003, 59, 119-126.	3.0	3
42	Transport of Proline and Hydroxyproline by the Neutral Amino-acid Exchanger ASCT1. Journal of Membrane Biology, 2003, 195, 27-32.	2.1	28
43	Distribution of the long leptin receptor isoform in brush border, basolateral membrane, and cytoplasm of enterocytes. Gut, 2002, 50, 797-802.	12.1	153
44	Cytokine effect on intestinal galactose absorption. Journal of Physiology and Biochemistry, 2002, 58, 61-62.	3.0	10
45	Nucleoside transporters in absorptive epithelia. Journal of Physiology and Biochemistry, 2002, 58, 207-216.	3.0	24
46	Role of the Human Concentrative Nucleoside Transporter (hCNT1) In the Cytotoxic Action of 5[Prime]-Deoxy-5-fluorouridine, an Active Intermediate Metabolite of Capecitabine, a Novel Oral Anticancer Drug. Molecular Pharmacology, 2001, 59, 1542-1548.	2.3	79
47	Leptin effect on galactose absorption in mice jejunum. Journal of Physiology and Biochemistry, 2001, 57, 345-346.	3.0	20
48	Active transport of alanine by the neutral amino-acid exchanger ASCT1. Canadian Journal of Physiology and Pharmacology, 2001, 79, 1023-1029.	1.4	1
49	Glycoside Binding and Translocation in Na + -Dependent Glucose Cotransporters: Comparison of SGLT1 and SGLT3. Journal of Membrane Biology, 2000, 176, 111-117.	2.1	37
50	Glycoside Binding and Translocation in Na+-Dependent Glucose Cotransporters: Comparison of SGLT1 and SGLT3. Journal of Membrane Biology, 2000, 176, 111-117.	2.1	50
51	Cytoskeleton involvement on intestinal absorption processes. Journal of Physiology and Biochemistry, 2000, 56, 25-32.	3.0	1
52	Electrogenic uptake of nucleosides and nucleoside-derived drugs by the human nucleoside transporter 1 (hCNT1) expressed inXenopus laevisoocytes. FEBS Letters, 2000, 481, 137-140.	2.8	52
53	Galactose transport inhibition by cytochalasin E in rat intestine in vitro. Canadian Journal of Physiology and Pharmacology, 1999, 77, 96-101.	1.4	2
54	Presence of leptin receptors in rat small intestine and leptin effect on sugar absorption. FEBS Letters, 1998, 423, 302-306.	2.8	110

#	ARTICLE	IF	CITATIONS
55	Compound missense mutations in the sodium/D-glucose cotransporter result in trafficking defects. Gastroenterology, 1997, 112, 1206-1212.	1.3	62
56	Kinetic and specificity differences between rat, human, and rabbit Na+-glucose cotransporters (SGLT-1). American Journal of Physiology - Renal Physiology, 1996, 270, G919-G926.	3.4	60
57	Defects in Na+/glucose cotransporter (SGLT1) trafficking and function cause glucose-galactose malabsorption. Nature Genetics, 1996, 12, 216-220.	21.4	261
58	Membrane Topology of the Human Na+/Glucose Cotransporter SGLT1. Journal of Biological Chemistry, 1996, 271, 1925-1934.	3.4	155
59	Arginine-427 in the Na+/glucose cotransporter (SGLT1) is involved in trafficking to the plasma membrane. FEBS Letters, 1995, 377, 181-184.	2.8	33
60	Phenylglucosides and the Na+/glucose cotransporter (SGLT1): Analysis of interactions. Journal of Membrane Biology, 1994, 142, 161-70.	2.1	86