
Mihaela D Iordanova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/589802/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Reinstatement of fear to an extinguished conditioned stimulus: Two roles for context Journal of Experimental Psychology, 2002, 28, 97-110.	1.7	95
2	New behavioral protocols to extend our knowledge of rodent object recognition memory. Learning and Memory, 2010, 17, 407-419.	1.3	72
3	Opioid Receptors in the Nucleus Accumbens Regulate Attentional Learning in the Blocking Paradigm. Journal of Neuroscience, 2006, 26, 4036-4045.	3.6	60
4	Retrieval-Mediated Learning Involving Episodes Requires Synaptic Plasticity in the Hippocampus. Journal of Neuroscience, 2011, 31, 7156-7162.	3.6	55
5	Causal evidence supporting the proposal that dopamine transients function as temporal difference prediction errors. Nature Neuroscience, 2020, 23, 176-178.	14.8	51
6	Evidence that the rat hippocampus has contrasting roles in object recognition memory and object recency memory Behavioral Neuroscience, 2012, 126, 659-669.	1.2	48
7	Reinstatement of fear to an extinguished conditioned stimulus: two roles for context. Journal of Experimental Psychology, 2002, 28, 97-110.	1.7	46
8	Dopamine activity in the nucleus accumbens modulates blocking in fear conditioning. European Journal of Neuroscience, 2006, 24, 3265-3270.	2.6	42
9	Pain hypersensitivity in rats with experimental autoimmune neuritis, an animal model of human inflammatory demyelinating neuropathy. Brain, Behavior, and Immunity, 2007, 21, 699-710.	4.1	42
10	Perirhinal cortex lesions uncover subsidiary systems in the rat for the detection of novel and familiar objects. European Journal of Neuroscience, 2011, 34, 331-342.	2.6	39
11	Separate but interacting recognition memory systems for different senses: The role of the rat perirhinal cortex. Learning and Memory, 2011, 18, 435-443.	1.3	36
12	Associative structures in animal learning: Dissociating elemental and configural processes. Neurobiology of Learning and Memory, 2014, 108, 96-103.	1.9	34
13	Neural substrates of appetitive and aversive prediction error. Neuroscience and Biobehavioral Reviews, 2021, 123, 337-351.	6.1	32
14	Dopaminergic Modulation of Appetitive and Aversive Predictive Learning. Reviews in the Neurosciences, 2009, 20, 383-404.	2.9	21
15	Role of the medial prefrontal cortex in acquired distinctiveness and equivalence of cues Behavioral Neuroscience, 2007, 121, 1431-1436.	1.2	20
16	Pattern memory involves both elemental and configural processes: Evidence from the effects of hippocampal lesions Behavioral Neuroscience, 2011, 125, 567-577.	1.2	18
17	Lesions of the perirhinal cortex do not impair integration of visual and geometric information in rats Behavioral Neuroscience, 2010, 124, 311-320.	1.2	16
18	Spatial learning based on boundaries in rats is hippocampus-dependent and prone to overshadowing Behavioral Neuroscience, 2010, 124, 623-632.	1.2	16

Mihaela D Iordanova

#	Article	IF	CITATIONS
19	Neural correlates of two different types of extinction learning in the amygdala central nucleus. Nature Communications, 2016, 7, 12330.	12.8	15
20	Dopamine transmission in the amygdala modulates surprise in an aversive blocking paradigm Behavioral Neuroscience, 2010, 124, 780-788.	1.2	13
21	Dissociation of Appetitive Overexpectation and Extinction in the Infralimbic Cortex. Cerebral Cortex, 2019, 29, 3687-3701.	2.9	12
22	Different methods of fear reduction are supported by distinct cortical substrates. ELife, 2020, 9, .	6.0	12
23	The serial blocking effect: a testbed for the neural mechanisms of temporal-difference learning. Scientific Reports, 2019, 9, 5962.	3.3	8
24	Adaptive behaviour under conflict: Deconstructing extinction, reversal, and active avoidance learning. Neuroscience and Biobehavioral Reviews, 2021, 120, 526-536.	6.1	8
25	The amygdala and flavour preference conditioning: Crossed lesions and inactivation. Physiology and Behavior, 2010, 101, 403-412.	2.1	7
26	Latent inhibition and habituation: evaluation of an associative analysis. , 0, , 163-182.		5
27	Dopamine signals mimic reward prediction errors. Nature Neuroscience, 2013, 16, 777-779.	14.8	5
28	Understanding Associative Learning Through Higher-Order Conditioning. Frontiers in Behavioral Neuroscience, 2022, 16, 845616.	2.0	5
29	Accumbal opioid receptors modulate cue competition in one-trial overshadowing. Brain Research, 2013, 1517, 57-67.	2.2	4
30	Mechanisms of higher-order learning in the amygdala. Behavioural Brain Research, 2021, 414, 113435.	2.2	4
31	Dopamine Signaling Is Critical for Supporting Cue-Driven Behavioral Control. Neuroscience, 2019, 412, 257-258.	2.3	2
32	A self-initiated cue-reward learning procedure for neural recording in rodents. Journal of Neuroscience Methods, 2020, 338, 108671.	2.5	2
33	Female rats take longer than male rats to update reward expectancies when outcomes are worse than expected Behavioral Neuroscience, 2020, 134, 417-423.	1.2	2
34	Thought control with the dopamine transient. Learning and Behavior, 2019, 47, 189-190.	1.0	0
35	Agency rescues competition for credit assignment among predictive cues from adverse learning conditions. Scientific Reports, 2021, 11, 16187.	3.3	0