Richard D Dix

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5897413/publications.pdf

Version: 2024-02-01

623734 552781 33 724 14 26 citations g-index h-index papers 33 33 33 563 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Comparative Neurovirulence of Herpes Simplex Virus Type 1 Strains After Peripheral or Intracerebral Inoculation of BALB/c Mice. Infection and Immunity, 1983, 40, 103-112.	2.2	231
2	Evidence For Multiple Cell Death Pathways during Development of Experimental Cytomegalovirus Retinitis in Mice with Retrovirus-Induced Immunosuppression: Apoptosis, Necroptosis, and Pyroptosis. Journal of Virology, 2012, 86, 10961-10978.	3.4	51
3	Induction of Encephalitis in SJL Mice by Intranasal Infection with Herpes Simplex Virus Type 1: A Possible Model of Herpes Simplex Encephalitis in Humans. Journal of Infectious Diseases, 1991, 163, 720-727.	4.0	50
4	Loss of the Perforin Cytotoxic Pathway Predisposes Mice to Experimental Cytomegalovirus Retinitis. Journal of Virology, 2003, 77, 3402-3408.	3.4	39
5	Viral forensic genomics reveals the relatedness of classic herpes simplex virus strains KOS, KOS63, and KOS79. Virology, 2016, 492, 179-186.	2.4	36
6	Mice immunosuppressed by murine retrovirus infection (MAIDS) are susceptible to cytomegalovirus retinitis. Current Eye Research, 1994, 13, 587-595.	1.5	30
7	Macrophage Activation Associated with Chronic Murine Cytomegalovirus Infection Results in More Severe Experimental Choroidal Neovascularization. PLoS Pathogens, 2012, 8, e1002671.	4.7	27
8	SOCS and Herpesviruses, With Emphasis on Cytomegalovirus Retinitis. Frontiers in Immunology, 2019, 10, 732.	4.8	24
9	Infection of Human Neural Cell Aggregate Cultures with a Clinical Isolate of Cytomegalovirus. Journal of Neuropathology and Experimental Neurology, 1991, 50, 441-450.	1.7	20
10	Susceptibility to murine cytomegalovirus retinitis during progression of MAIDS: Correlation with intraocular levels of tumor necrosis factor- \hat{l}_{\pm} and interferon- \hat{l}_{-}^{3} . Current Eye Research, 2004, 29, 173-180.	1.5	20
11	Murine cytomegalovirus downregulates interleukin-17 in mice with retrovirus-induced immunosuppression that are susceptible to experimental cytomegalovirus retinitis. Cytokine, 2013, 61, 862-875.	3.2	19
12	Interleukin-2 Immunotherapy of Murine Cytomegalovirus Retinitis during MAIDS Correlates with Increased Intraocular CD8+ T-Cell Infiltration. Ophthalmic Research, 2003, 35, 154-159.	1.9	18
13	Antibody Alone Does Not Prevent Experimental Cytomegalovirus Retinitis in Mice with Retrovirus-Induced Immunodeficiency (MAIDS). Ophthalmic Research, 1997, 29, 381-392.	1.9	16
14	Histopathologic characteristics of two forms of experimental herpes simplex virus retinitis. Current Eye Research, 1987, 6, 47-52.	1.5	14
15	Systemic Murine Cytomegalovirus Infection of Mice with Retrovirus- Induced Immunodeficiency Results in Ocular Infection but Not Retinitis. Ophthalmic Research, 1998, 30, 295-301.	1.9	13
16	Murine cytomegalovirus retinitis during MAIDS: Susceptibility correlates with elevated intraocular levels of interleukin-4 mRNA. Current Eye Research, 2003, 26, 211-217.	1.5	12
17	Interleukin-2 Immunotherapy and AIDS-Related Cytomegalovirus Retinitis. Current HIV Research, 2004, 2, 333-342.	0.5	12
18	Murine cytomegalovirus infection of mouse macrophages stimulates early expression of suppressor of cytokine signaling (SOCS)1 and SOCS3. PLoS ONE, 2017, 12, e0171812.	2.5	12

#	Article	IF	CITATIONS
19	AIDS-related cytomegalovirus retinitis: Lessons from the laboratory. Current Eye Research, 2004, 29, 91-101.	1.5	11
20	Systemic Reduction of Interleukin-4 or Interleukin-10 Fails to Reduce the Frequency or Severity of Experimental Cytomegalovirus Retinitis in Mice with Retrovirus-Induced Immunosuppression. Ophthalmology and Eye Diseases, 2012, 4, OED.S10294.	1.2	11
21	Suppressor of Cytokine Signaling 1 (SOCS1) and SOCS3 Are Stimulated within the Eye during Experimental Murine Cytomegalovirus Retinitis in Mice with Retrovirus-Induced Immunosuppression. Journal of Virology, 2018, 92, .	3.4	10
22	Reduced frequency of murine cytomegalovirus retinitis in C57BL/6 mice correlates with low levels of suppressor of cytokine signaling (SOCS)1 and SOCS3 expression within the eye during corticosteroid-induced immunosuppression. Cytokine, 2017, 97, 38-41.	3.2	9
23	Programmed Cell Death-Dependent Host Defense in Ocular Herpes Simplex Virus Infection. Frontiers in Microbiology, 2022, 13, 869064.	3.5	7
24	Murine cytomegalovirus retinitis during retrovirus-induced immunodeficiency (MAIDS) in mice: interleukin-2 immunotherapy correlates with increased intraocular levels of perforin mRNA. Antiviral Research, 2003, 59, 111-119.	4.1	6
25	Parthanatosâ€associated proteins are stimulated intraocularly during development of experimental murine cytomegalovirus retinitis in mice with retrovirusâ€induced immunosuppression. Journal of Medical Virology, 2020, 92, 394-398.	5.0	6
26	Atypical cytomegalovirus retinal disease in pyroptosis-deficient mice with murine acquired immunodeficiency syndrome. Experimental Eye Research, 2021, 209, 108651.	2.6	5
27	Bilateral electroretinographic changes induced by unilateral intra?visual cortex inoculation of herpes simplex virus type 1 in BALB/c mice. Documenta Ophthalmologica, 1993, 84, 213-230.	2.2	4
28	Mechanisms of AIDS-related cytomegalovirus retinitis. Future Virology, 2019, 14, 545-560.	1.8	4
29	Transcriptional analysis of immune response genes during pathogenesis of cytomegalovirus retinitis in mice with murine acquired immunodeficiency syndrome. PLoS Pathogens, 2020, 16, e1009032.	4.7	4
30	Glycoprotein gB of herpes simplex virus expresses type-common and type-specific antigenic determinants in vivo. Journal of Medical Virology, 1990, 30, 192-195.	5.0	1
31	A Mouse Model That Mimics AIDS-Related Cytomegalovirus Retinitis: Insights into Pathogenesis. Pathogens, 2021, 10, 850.	2.8	1
32	Evidence for the involvement of interleukin-1α during development of experimental cytomegalovirus retinitis in immunosuppressed mice. Cytokine, 2021, 144, 155596.	3.2	1
33	Remembrance of Professor James Milton Hill (1942–2013). Current Eye Research, 2014, 39, 103-103.	1.5	0