Margaret N Holme

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5896268/publications.pdf

Version: 2024-02-01

759233 552781 1,618 27 12 26 citations h-index g-index papers 29 29 29 3010 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Novel endosomolytic compounds enable highly potent delivery of antisense oligonucleotides. Communications Biology, 2022, 5, 185.	4.4	7
2	Coupling Lipid Nanoparticle Structure and Automated Singleâ€Particle Composition Analysis to Design Phospholipaseâ€Responsive Nanocarriers. Advanced Materials, 2022, 34, e2200839.	21.0	10
3	Peptide-Folding Triggered Phase Separation and Lipid Membrane Destabilization in Cholesterol-Rich Lipid Vesicles. Bioconjugate Chemistry, 2022, 33, 736-746.	3. 6	3
4	Potent Virustatic Polymer–Lipid Nanomimics Block Viral Entry and Inhibit Malaria Parasites In Vivo. ACS Central Science, 2022, 8, 1238-1257.	11.3	9
5	Identification of storage conditions stabilizing extracellular vesicles preparations. Journal of Extracellular Vesicles, 2022, 11 , .	12.2	91
6	Design of Lipid-Based Nanocarriers via Cation Modulation of Ethanol-Interdigitated Lipid Membranes. Langmuir, 2021, 37, 11909-11921.	3.5	4
7	Delivery of Oligonucleotide Therapeutics: Chemical Modifications, Lipid Nanoparticles, and Extracellular Vesicles. ACS Nano, 2021, 15, 13993-14021.	14.6	74
8	Advances in high-resolution microscopy for the study of intracellular interactions with biomaterials. Biomaterials, 2020, 226, 119406.	11.4	30
9	Controlled Dendrimersome Nanoreactor System for Localized Hypochlorite-Induced Killing of Bacteria. ACS Nano, 2020, 14, 17333-17353.	14.6	29
10	Gold Nanocluster Extracellular Vesicle Supraparticles: Self-Assembled Nanostructures for Three-Dimensional Uptake Visualization. Langmuir, 2020, 36, 3912-3923.	3.5	11
11	Cubosomen: die nähste Generation intelligenter Lipidâ€Nanopartikel?. Angewandte Chemie, 2019, 131, 2984-3006.	2.0	11
12	Effect of Formulation Method, Lipid Composition, and PEGylation on Vesicle Lamellarity: A Small-Angle Neutron Scattering Study. Langmuir, 2019, 35, 6064-6074.	3.5	69
13	Physical stimuli-responsive vesicles in drug delivery: Beyond liposomes and polymersomes. Advanced Drug Delivery Reviews, 2019, 138, 259-275.	13.7	146
14	Cubosomes: The Next Generation of Smart Lipid Nanoparticles?. Angewandte Chemie - International Edition, 2019, 58, 2958-2978.	13.8	313
15	A Robust Liposomal Platform for Direct Colorimetric Detection of Sphingomyelinase Enzyme and Inhibitors. ACS Nano, 2018, 12, 8197-8207.	14.6	35
16	Fate of Liposomes in the Presence of Phospholipase C and D: From Atomic to Supramolecular Lipid Arrangement. ACS Central Science, 2018, 4, 1023-1030.	11.3	18
17	Re-Engineering Extracellular Vesicles as Smart Nanoscale Therapeutics. ACS Nano, 2017, 11, 69-83.	14.6	432
18	X-ray microscopy of soft and hard human tissues. AIP Conference Proceedings, 2016, , .	0.4	1

#	Article	lF	CITATIONS
19	Histology-validated x-ray tomography for imaging human coronary arteries. Proceedings of SPIE, 2016,	0.8	0
20	Imaging tissues for biomedical research using the high-resolution micro-tomography system nanotom $\hat{A}^{@}$ m. Proceedings of SPIE, 2016, , .	0.8	0
21	Grating interferometry-based phase microtomography of atherosclerotic human arteries. Proceedings of SPIE, 2014, , .	0.8	3
22	Complementary X-ray tomography techniques for histology-validated 3D imaging of soft and hard tissues using plaque-containing blood vessels as examples. Nature Protocols, 2014, 9, 1401-1415.	12.0	55
23	Grating-based tomography of human tissues. AIP Conference Proceedings, 2012, , .	0.4	5
24	Morphology of atherosclerotic coronary arteries. Proceedings of SPIE, 2012, , .	0.8	6
25	Shear Stress as Drug Delivery Trigger. Chimia, 2012, 66, 715.	0.6	1
26	Shear-stress sensitive lenticular vesicles for targeted drug delivery. Nature Nanotechnology, 2012, 7, 536-543.	31.5	248
27	Putting the 'P' into Phospholipids. Chimia, 2011, 65, 859.	0.6	4