Ludek Blaha

List of Publications by Citations

Source: https://exaly.com/author-pdf/5896165/ludek-blaha-publications-by-citations.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

192 6,472 39 74 g-index

206 7,290 5 2.6 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
192	EU-wide monitoring survey on emerging polar organic contaminants in wastewater treatment plant effluents. <i>Water Research</i> , 2013 , 47, 6475-87	12.5	746
191	Pan-European survey on the occurrence of selected polar organic persistent pollutants in ground water. <i>Water Research</i> , 2010 , 44, 4115-26	12.5	614
190	Aryl hydrocarbon receptor-mediated activity of mutagenic polycyclic aromatic hydrocarbons determined using in vitro reporter gene assay. <i>Mutation Research - Genetic Toxicology and Environmental Mutagenesis</i> , 2001 , 497, 49-62	3	247
189	EXPLORING THE NATURAL ROLE OF MICROCYSTINS REVIEW OF EFFECTS ON PHOTOAUTOTROPHIC ORGANISMS1. <i>Journal of Phycology</i> , 2006 , 42, 9-20	3	180
188	Toxins produced in cyanobacterial water blooms - toxicity and risks. <i>Interdisciplinary Toxicology</i> , 2009 , 2, 36-41	2.3	162
187	Environmental xenobiotics and nuclear receptorsinteractions, effects and in vitro assessment. <i>Toxicology in Vitro</i> , 2006 , 20, 18-37	3.6	133
186	A European perspective on alternatives to animal testing for environmental hazard identification and risk assessment. <i>Regulatory Toxicology and Pharmacology</i> , 2013 , 67, 506-30	3.4	121
185	Ecotoxicity and genotoxicity assessment of cytostatic pharmaceuticals. <i>Environmental Toxicology and Chemistry</i> , 2007 , 26, 2208-14	3.8	115
184	What level of estrogenic activity determined by in vitro assays in municipal waste waters can be considered as safe?. <i>Environment International</i> , 2014 , 64, 98-109	12.9	110
183	Temperature Effects Explain Continental Scale Distribution of Cyanobacterial Toxins. <i>Toxins</i> , 2018 , 10,	4.9	109
182	European demonstration program on the effect-based and chemical identification and monitoring of organic pollutants in European surface waters. <i>Science of the Total Environment</i> , 2017 , 601-602, 1849	-1868	106
181	Ecotoxicity and genotoxicity assessment of cytotoxic antineoplastic drugs and their metabolites. <i>Chemosphere</i> , 2010 , 81, 253-60	8.4	96
180	Mixtures of chemical pollutants at European legislation safety concentrations: how safe are they?. <i>Toxicological Sciences</i> , 2014 , 141, 218-33	4.4	95
179	Evaluation of extraction approaches linked to ELISA and HPLC for analyses of microcystin-LR, -RR and -YR in freshwater sediments with different organic material contents. <i>Analytical and Bioanalytical Chemistry</i> , 2006 , 385, 1545-51	4.4	84
178	The first occurrence of the cyanobacterial alkaloid toxin cylindrospermopsin in the Czech Republic as determined by immunochemical and LC/MS methods. <i>Toxicon</i> , 2009 , 53, 519-24	2.8	83
177	Toxicity of hydroxylated and quinoid PCB metabolites: inhibition of gap junctional intercellular communication and activation of aryl hydrocarbon and estrogen receptors in hepatic and mammary cells. <i>Chemical Research in Toxicology</i> , 2004 , 17, 340-7	4	79
176	Inhibition of gap-junctional intercellular communication by environmentally occurring polycyclic aromatic hydrocarbons. <i>Toxicological Sciences</i> , 2002 , 65, 43-51	4.4	79

(2011-2001)

175	hydrocarbon receptor-mediated and estrogenic activities of oxygenated polycyclic aromatic hydrocarbons and azaarenes originally identified in extracts of river sediments. <i>Environmental Toxicology and Chemistry</i> , 2001 , 20, 2736-2743	3.8	76
174	Toxic effects and oxidative stress in higher plants exposed to polycyclic aromatic hydrocarbons and their N-heterocyclic derivatives. <i>Environmental Toxicology and Chemistry</i> , 2006 , 25, 3238-45	3.8	75
173	Aryl hydrocarbon receptor-mediated and estrogenic activities of oxygenated polycyclic aromatic hydrocarbons and azaarenes originally identified in extracts of river sediments. <i>Environmental Toxicology and Chemistry</i> , 2001 , 20, 2736-43	3.8	72
172	Microcystin kinetics (bioaccumulation and elimination) and biochemical responses in common carp (Cyprinus carpio) and silver carp (Hypophthalmichthys molitrix) exposed to toxic cyanobacterial blooms. <i>Environmental Toxicology and Chemistry</i> , 2007 , 26, 2687-93	3.8	69
171	Inhibition of gap junctional intercellular communication by noncoplanar polychlorinated biphenyls: inhibitory potencies and screening for potential mode(s) of action. <i>Toxicological Sciences</i> , 2003 , 76, 102-	1414	66
170	Monitoring river sediments contaminated predominantly with polyaromatic hydrocarbons by chemical and in vitro bioassay techniques. <i>Environmental Toxicology and Chemistry</i> , 2001 , 20, 1499-1506	3.8	66
169	Activation of the aryl hydrocarbon receptor by berberine in HepG2 and H4IIE cells: Biphasic effect on CYP1A1. <i>Biochemical Pharmacology</i> , 2005 , 70, 925-36	6	64
168	Analyses of cyanobacterial toxins (microcystins, cylindrospermopsin) in the reservoirs of the Czech Republic and evaluation of health risks. <i>Environmental Chemistry Letters</i> , 2008 , 6, 223-227	13.3	55
167	Yeast Biosensors for Detection of Environmental Pollutants: Current State and Limitations. <i>Trends in Biotechnology</i> , 2016 , 34, 408-419	15.1	54
166	Selected endocrine disrupting compounds (vinclozolin, flutamide, ketoconazole and dicofol): effects on survival, occurrence of males, growth, molting and reproduction of Daphnia magna. <i>Environmental Science and Pollution Research</i> , 2008 , 15, 222-7	5.1	54
165	Toxicity of complex cyanobacterial samples and their fractions in Xenopus laevis embryos and the role of microcystins. <i>Aquatic Toxicology</i> , 2006 , 80, 346-54	5.1	54
164	Estrogen-, androgen- and aryl hydrocarbon receptor mediated activities in passive and composite samples from municipal waste and surface waters. <i>Environment International</i> , 2013 , 59, 372-83	12.9	53
163	Effect of different cyanobacterial biomasses and their fractions with variable microcystin content on embryonal development of carp (Cyprinus carpio L.). <i>Aquatic Toxicology</i> , 2007 , 81, 312-8	5.1	52
162	Oxidative Stress Biomarkers are Modulated in Silver Carp (Hypophthalmichthys molitrix Val.) Exposed to Microcystin-Producing Cyanobacterial Water Bloom. <i>Acta Veterinaria Brno</i> , 2004 , 73, 477-48	2 ^{0.8}	48
161	Europe-wide survey of estrogenicity in wastewater treatment plant effluents: the need for the effect-based monitoring. <i>Environmental Science and Pollution Research</i> , 2014 , 21, 10970-82	5.1	47
160	Tumor promoting properties of a cigarette smoke prevalent polycyclic aromatic hydrocarbon as indicated by the inhibition of gap junctional intercellular communication via phosphatidylcholine-specific phospholipase C. <i>Cancer Science</i> , 2008 , 99, 696-705	6.9	47
159	Oxidative stress and detoxification biomarker responses in aquatic freshwater vertebrates exposed to microcystins and cyanobacterial biomass. <i>Environmental Science and Pollution Research</i> , 2012 , 19, 202	2 4 -37	45
158	Complex evaluation of ecotoxicity and genotoxicity of antimicrobials oxytetracycline and flumequine used in aquaculture. <i>Environmental Toxicology and Chemistry</i> , 2011 , 30, 1184-9	3.8	45

157	Immunomodulatory Potency of Microcystin, an Important Water-Polluting Cyanobacterial Toxin. <i>Environmental Science & Environmental Science & Environme</i>	10.3	43
156	Toxicity Increases in Ice Containing Monochlorophenols upon Photolysis: Environmental Consequences. <i>Environmental Science & amp; Technology</i> , 2004 , 38, 2873-2878	10.3	42
155	Estrogenic activity in extracts and exudates of cyanobacteria and green algae. <i>Environment International</i> , 2012 , 39, 134-40	12.9	41
154	Cytotoxicity and aryl hydrocarbon receptor-mediated activity of n-heterocyclic polycyclic aromatic hydrocarbons: structure-activity relationships. <i>Environmental Toxicology and Chemistry</i> , 2006 , 25, 1291-	73.8	40
153	Toxic cyanobacteria and cyanotoxins in European waters I recent progress achieved through the CYANOCOST Action and challenges for further research. <i>Advances in Oceanography and Limnology</i> , 2017 , 8,	1.3	39
152	AhR-mediated and antiestrogenic activity of humic substances. <i>Chemosphere</i> , 2007 , 67, 1096-101	8.4	39
151	. Phycologia, 2007 , 46, 137-142	2.7	39
150	Do predictions from Species Sensitivity Distributions match with field data?. <i>Environmental Pollution</i> , 2014 , 189, 126-33	9.3	38
149	Alteration of steroidogenesis in H295R cells by organic sediment contaminants and relationships to other endocrine disrupting effects. <i>Environment International</i> , 2006 , 32, 749-57	12.9	38
148	Drinking water contaminants from epoxy resin-coated pipes: A field study. <i>Water Research</i> , 2016 , 103, 133-140	12.5	37
147	Inhibition of gap junctional intercellular communication and activation of mitogen-activated protein kinase by tumor-promoting organic peroxides and protection by resveratrol. <i>Nutrition and Cancer</i> , 2007 , 57, 38-47	2.8	37
146	Age dependency and mutual relations in T and B lymphocyte abnormalities in common variable immunodeficiency patients. <i>Clinical and Experimental Immunology</i> , 2006 , 143, 373-9	6.2	37
145	Concentrations and Seasonal Trends of Extracellular Microcystins in Freshwaters of the Czech Republic [Results of the National Monitoring Program. <i>Clean - Soil, Air, Water</i> , 2007 , 35, 348-354	1.6	35
144	Effects of enrofloxacin, ciprofloxacin, and trimethoprim on two generations of Daphnia magna. <i>Ecotoxicology and Environmental Safety</i> , 2015 , 113, 152-8	7	34
143	Acute, chronic and reproductive toxicity of complex cyanobacterial blooms in Daphnia magna and the role of microcystins. <i>Toxicon</i> , 2014 , 79, 11-8	2.8	34
142	Dietary Intake of Acrylamide and Risk of Breast, Endometrial, and Ovarian Cancers: A Systematic Review and Dose-Response Meta-analysis. <i>Cancer Epidemiology Biomarkers and Prevention</i> , 2020 , 29, 1095-1106	4	34
141	Isolation and endotoxin activities of lipopolysaccharides from cyanobacterial cultures and complex water blooms and comparison with the effects of heterotrophic bacteria and green alga. <i>Journal of Applied Toxicology</i> , 2008 , 28, 72-7	4.1	33
140	Effects of N-heterocyclic polyaromatic hydrocarbons on survival, reproduction, and biochemical parameters in Daphnia magna. <i>Environmental Toxicology</i> , 2006 , 21, 425-31	4.2	33

(2011-2008)

Endocrine regulation of the reproduction in crustaceans: Identification of potential targets for toxicants and environmental contaminants. <i>Biologia (Poland)</i> , 2008 , 63, 139-150	1.5	32	
Activation of Ah receptor by pure humic acids. <i>Environmental Toxicology</i> , 2006 , 21, 338-42	4.2	31	
Bioluminescent Assays in the Assessment of Seasonal and Spatial Patterns in Toxicity of Contaminated River Sediments. <i>Frontiers in Microbiology</i> , 2016 , 7, 1738	5.7	30	
Changes in concentrations of hydrophilic organic contaminants and of endocrine-disrupting potential downstream of small communities located adjacent to headwaters. <i>Environment International</i> . 2012 . 45. 22-31	12.9	29	
Are in vitro methods for the detection of endocrine potentials in the aquatic environment predictive for in vivo effects? Outcomes of the Projects SchussenAktiv and SchussenAktivplus in the Lake Constance Area, Germany. <i>PLoS ONE</i> , 2014 , 9, e98307	3.7	28	
Expert opinion on toxicity profilingreport from a NORMAN expert group meeting. <i>Integrated Environmental Assessment and Management</i> , 2013 , 9, 185-91	2.5	27	
Comparison of 17 biotests for detection of cyanobacterial toxicity. <i>Environmental Toxicology</i> , 2004 , 19, 310-7	4.2	27	
Effects of cyanobacterial biomass and purified microcystins on malformations in Xenopus laevis: teratogenesis assay (FETAX). <i>Environmental Toxicology</i> , 2002 , 17, 547-55	4.2	27	
Removal of microcystins by phototrophic biofilms. A microcosm study. <i>Environmental Science and Pollution Research</i> , 2005 , 12, 369-74	5.1	27	
Biological plausibility as a tool to associate analytical data for micropollutants and effect potentials in wastewater, surface water, and sediments with effects in fishes. <i>Water Research</i> , 2015 , 72, 127-44	12.5	26	
Endocrine effects of contaminated sediments on the freshwater snail Potamopyrgus antipodarum in vivo and in the cell bioassays in vitro. <i>Aquatic Toxicology</i> , 2008 , 89, 172-9	5.1	26	
A novel approach for monitoring of cyanobacterial toxins: development and evaluation of the passive sampler for microcystins. <i>Analytical and Bioanalytical Chemistry</i> , 2008 , 390, 1167-72	4.4	26	
Toxicity and modulations of biomarkers in Xenopus laevis embryos exposed to polycyclic aromatic hydrocarbons and their N-heterocyclic derivatives. <i>Environmental Toxicology</i> , 2006 , 21, 590-8	4.2	26	
Microbiome Composition and Function in Aquatic Vertebrates: Small Organisms Making Big Impacts on Aquatic Animal Health. <i>Frontiers in Microbiology</i> , 2021 , 12, 567408	5.7	26	
Phytoestrogens and sterols in waters with cyanobacterial blooms -[Analytical methods and estrogenic potencies. <i>Chemosphere</i> , 2017 , 170, 104-112	8.4	24	
Acute and (sub)chronic toxicity of the neonicotinoid imidacloprid on Chironomus riparius. <i>Chemosphere</i> , 2018 , 209, 568-577	8.4	24	
In vitro modulation of intracellular receptor signaling and cytotoxicity induced by extracts of cyanobacteria, complex water blooms and their fractions. <i>Aquatic Toxicology</i> , 2011 , 105, 497-507	5.1	24	
Teratogenicity and embryotoxicity in aquatic organisms after pesticide exposure and the role of oxidative stress. <i>Reviews of Environmental Contamination and Toxicology</i> , 2011 , 211, 25-61	3.5	23	
	Activation of Ah receptor by pure humic acids. Environmental Toxicology, 2006, 21, 338-42 Bioluminescent Assays in the Assessment of Seasonal and Spatial Patterns in Toxicity of Contaminated River Sediments. Frontiers in Microbiology, 2016, 7, 1738 Changes in concentrations of hydrophilic organic contaminants and of endocrine-disrupting potential downstream of small communities located adjacent to headwaters. Environment International, 2012, 48, 22-31 Are in vitro methods for the detection of endocrine potentials in the aquatic environment predictive for in vivo effects? Outcomes of the Projects SchussenAktiv and SchussenAktivplus in the Lake Constance Area, Germany. PLoS ONE, 2014, 9, e98307 Expert opinion on toxicity profiling-report from a NORMAN expert group meeting. Integrated Environmental Assessment and Management, 2013, 9, 185-91 Comparison of 17 biotests for detection of cyanobacterial toxicity. Environmental Toxicology, 2004, 19, 310-7 Effects of cyanobacterial biomass and purified microcystins on malformations in Xenopus laevis: teratogenesis assay (FETAX). Environmental Toxicology, 2002, 17, 547-55 Removal of microcystins by phototrophic biofilms. A microcosm study. Environmental Science and Pollution Research, 2005, 12, 369-74 Biological plausibility as a tool to associate analytical data for micropollutants and effect potentials in wastewater, surface water, and sediments with effects in fishes. Water Research, 2015, 72, 127-44 Endocrine effects of contaminated sediments on the freshwater snail Potamopyrgus antipodarum in vivo and in the cell bioassays in vitro. Aquatic Toxicology, 2008, 89, 172-9 A novel approach for monitoring of cyanobacterial toxins: development and evaluation of the passive sampler for microcystins. Analytical and Bioanalytical Chemistry, 2008, 390, 1167-72 Toxicity and modulations of biomarkers in Xenopus laevis embryos exposed to polycyclic aromatic hydrocarbons and their N-heterocyclic derivatives. Environmental Toxicology, 2006, 21, 590-8 Microbiome Compositio	Activation of Ah receptor by pure humic acids. Environmental Toxicology, 2006, 21, 338-42 Activation of Ah receptor by pure humic acids. Environmental Toxicology, 2006, 21, 338-42 Bioluminescent Assays in the Assessment of Seasonal and Spatial Patterns in Toxicity of Contaminated River Sediments. Frontiers in Microbiology, 2016, 7, 1738 57 Changes in concentrations of hydrophilic organic contaminants and of endocrine-disrupting potential downstream of small communities located adjacent to headwaters. Environment International, 2012, 45, 22-31 Are in vitro methods for the detection of endocrine potentials in the aquatic environment predictive for in vivo effects? Outcomes of the Projects SchussenAktiv and SchussenAktivplus in the Lake Constance Area, Germany. PLoS ONE, 2014, 9, e98307 Expert opinion on toxicity profiling—report from a NORMAN expert group meeting. Integrated Environmental Assessment and Management, 2013, 9, 185-91 Comparison of 17 biotests for detection of cyanobacterial toxicity. Environmental Toxicology, 2004, 19, 310-7 Effects of cyanobacterial biomass and purified microcystins on malformations in Xenopus laevis: teratogenesis assay (FETAX). Environmental Toxicology, 2002, 17, 547-55 Removal of microcystins by phototrophic biofilms. A microcosm study. Environmental Science and Pollution Research, 2005, 12, 369-74 Biological plausibility as a tool to associate analytical data for micropollutants and effect potentials in wastewater, surface water, and sediments with effects in fishes. Water Research, 2015, 72, 127-44 Endocrine effects of contaminated sediments on the freshwater snail Potamopyrgus antipodarum in vivo and in the cell bioassays in vitro. Aquatic Toxicology, 2008, 89, 172-9 A novel approach for monitoring of cyanobacterial toxins: development and evaluation of the passive sampler for microcystins. Analytical and Bioanalytical Chemistry, 2008, 390, 1167-72 Toxicity and modulations of biomarkers in Xenopus laevis embryos exposed to polycyclic aromatic hydrocarbons and the	Activation of Ah receptor by pure humic acids. Environmental Toxicology, 2006, 21, 338-42 Activation of Ah receptor by pure humic acids. Environmental Toxicology, 2006, 21, 338-42 Activation of Ah receptor by pure humic acids. Environmental Toxicology, 2006, 21, 338-42 Activation of Ah receptor by pure humic acids. Environmental Toxicology, 2006, 21, 338-42 Activation of Ah receptor by pure humic acids. Environmental Toxicology, 2006, 21, 338-42 Activation of Ah receptor by pure humic acids. Environment International Content and International Content an

121	Effects of microcystin and complex cyanobacterial samples on the growth and oxidative stress parameters in green alga Pseudokirchneriella subcapitata and comparison with the model oxidative stressorherbicide paraquat. <i>Environmental Toxicology</i> , 2011 , 26, 641-8	4.2	23
120	SchussenAktivplus: reduction of micropollutants and of potentially pathogenic bacteria for further water quality improvement of the river Schussen, a tributary of Lake Constance, Germany. <i>Environmental Sciences Europe</i> , 2013 , 25,	5	22
119	Mitochondrial toxicity of microcystin-LR on cultured cells: application to the analysis of contaminated water samples. <i>Environmental Science & Environmental </i>	10.3	22
118	LC-MS analyses of microcystins in fish tissues overestimate toxin levels-critical comparison with LC-MS/MS. <i>Analytical and Bioanalytical Chemistry</i> , 2010 , 398, 1231-7	4.4	22
117	Polychlorinated naphthalenes and other dioxin-like compounds in Elbe River sediments. <i>Environmental Toxicology and Chemistry</i> , 2008 , 27, 519-28	3.8	22
116	Can zero-valent iron nanoparticles remove waterborne estrogens?. <i>Journal of Environmental Management</i> , 2015 , 150, 387-392	7.9	21
115	Induction of aryl hydrocarbon receptor-mediated and estrogen receptor-mediated activities, and modulation of cell proliferation by dinaphthofurans. <i>Environmental Toxicology and Chemistry</i> , 2004 , 23, 2214-20	3.8	21
114	Prioritization of hazards of novel flame retardants using the mechanistic toxicology information from ToxCast and Adverse Outcome Pathways. <i>Environmental Sciences Europe</i> , 2019 , 31,	5	20
113	The isolation and characterization of lipopolysaccharides from Microcystis aeruginosa, a prominent toxic water bloom forming cyanobacteria. <i>Toxicon</i> , 2013 , 76, 187-96	2.8	20
112	Interference of contaminated sediment extracts and environmental pollutants with retinoid signaling. <i>Environmental Toxicology and Chemistry</i> , 2007 , 26, 1591-9	3.8	20
111	Repeatability and Reproducibility of the RTgill-W1 Cell Line Assay for Predicting Fish Acute Toxicity. <i>Toxicological Sciences</i> , 2019 , 169, 353-364	4.4	19
110	The effects of PAHs and N-PAHs on retinoid signaling and Oct-4 expression in vitro. <i>Toxicology Letters</i> , 2011 , 200, 169-75	4.4	19
109	Inhibition of gap-junctional intercellular communication and activation of mitogen-activated protein kinases by cyanobacterial extractsindications of novel tumor-promoting cyanotoxins?. <i>Toxicon</i> , 2010 , 55, 126-34	2.8	19
108	Contamination of drinking water in the Czech Republic by microcystins. <i>Archiv Fa Hydrobiologie</i> , 2003 , 158, 421-429		19
107	Sublethal Toxic Effects and Induction of gGutathione S-transferase by Short-Chain Chlorinated Paraffins (SCCPs) and C-12 alkane (dodecane) in Xenopus laevis Frog Embryos. <i>Acta Veterinaria Brno</i> , 2006 , 75, 115-122	0.8	19
106	Association of surface contamination by antineoplastic drugs with different working conditions in hospital pharmacies. <i>Archives of Environmental and Occupational Health</i> , 2014 , 69, 148-58	2	18
105	Evaluation of the efficacy of additional measures introduced for the protection of healthcare personnel handling antineoplastic drugs. <i>Annals of Occupational Hygiene</i> , 2013 , 57, 240-50		18
104	Teratogenic effects of five anticancer drugs on Xenopus laevis embryos. <i>Ecotoxicology and Environmental Safety</i> , 2016 , 133, 90-6	7	17

103	Modulation of gap-junctional intercellular communication by a series of cyanobacterial samples from nature and laboratory cultures. <i>Toxicon</i> , 2011 , 58, 76-84	2.8	17	
102	Determination of atrazine in surface waters by combination of POCIS passive sampling and ELISA detection. <i>Journal of Environmental Monitoring</i> , 2011 , 13, 2582-7		17	
101	Evaluation of the novel passive sampler for cyanobacterial toxins microcystins under various conditions including field sampling. <i>Analytical and Bioanalytical Chemistry</i> , 2010 , 397, 823-8	4.4	17	
100	Quaternary benzo[c]phenathridine alkaloids sanguinarine and chelerythrine do not affect transcriptional activity of aryl hydrocarbon receptor: analyses in rat hepatoma cell line H4IIE.luc. Food and Chemical Toxicology, 2006, 44, 1466-73	4.7	17	
99	Immunomodulatory effects of cyanobacterial toxin cylindrospermopsin on innate immune cells. <i>Chemosphere</i> , 2019 , 226, 439-446	8.4	16	
98	Simultaneous determination of reduced and oxidized glutathione in tissues by a novel liquid chromatography-mass spectrometry method: application in an inhalation study of Cd nanoparticles. <i>Analytical and Bioanalytical Chemistry</i> , 2014 , 406, 5867-76	4.4	16	
97	Validation of the species sensitivity distribution in retrospective risk assessment of herbicides at the river basin scale-the Scheldt river basin case study. <i>Environmental Science and Pollution Research</i> , 2013 , 20, 6070-84	5.1	16	
96	Enantioselective effects of alpha-hexachlorocyclohexane (HCH) isomers on androgen receptor activity in vitro. <i>Chemosphere</i> , 2012 , 86, 65-9	8.4	16	
95	Biochemical parameters of blood plasma and content of microcystins in tissues of common carp (Cyprinus carpio L.) from a hypertrophic pond with cyanobacterial water bloom. <i>Aquaculture Research</i> , 2009 , 40, 1683-1693	1.9	16	
94	QSAR for acute toxicity of saturated and unsaturated halogenated aliphatic compounds. <i>Chemosphere</i> , 1998 , 36, 1345-1365	8.4	16	
93	Interference of PAHs and their N-heterocyclic analogs with signaling of retinoids in vitro. <i>Toxicology in Vitro</i> , 2008 , 22, 1909-17	3.6	16	
92	Identification of algal growth inhibitors in treated waste water using effect-directed analysis based on non-target screening techniques. <i>Journal of Hazardous Materials</i> , 2018 , 358, 494-502	12.8	16	
91	Climate finance and green growth: reconsidering climate-related institutions, investments, and priorities in Nepal. <i>Environmental Sciences Europe</i> , 2019 , 31,	5	15	
90	Kinetic bacterial bioluminescence assay for contact sediment toxicity testing: relationships with the matrix composition and contamination. <i>Environmental Toxicology and Chemistry</i> , 2010 , 29, 507-14	3.8	15	
89	Toxicity of Crude Extracts of Cyanobacteria for Embryos and Larvae of Carp (Cyprinus carpio L.). <i>Acta Veterinaria Brno</i> , 2003 , 72, 437-443	0.8	15	
88	A European Multi Lake Survey dataset of environmental variables, phytoplankton pigments and cyanotoxins. <i>Scientific Data</i> , 2018 , 5, 180226	8.2	15	
87	Assessment of Hepatotoxic Potential of Cyanobacterial Toxins Using 3D In Vitro Model of Adult Human Liver Stem Cells. <i>Environmental Science & Environmental Science & Environ</i>	10.3	14	
86	Temporal and spatial variability of cyanobacterial toxins microcystins in three interconnected freshwater reservoirs. <i>Journal of the Serbian Chemical Society</i> , 2010 , 75, 1303-1312	0.9	14	

85	Separation of microcystins by capillary electrochromatography in monolithic columns. <i>Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences</i> , 2006 , 841, 140-4	3.2	14	
84	Outcomes of Repeated Exposure of the Carp (Cyprinus carpio L.) to Cyanobacteria Extract. <i>Acta Veterinaria Brno</i> , 2004 , 73, 259-265	0.8	14	
83	POCIS sampling in combination with ELISA: screening of sulfonamide residues in surface and waste waters. <i>Journal of Environmental Monitoring</i> , 2012 , 14, 250-7		13	
82	Utilization of the solid sorbent media in monitoring of airborne cyclophosphamide concentrations and the implications for occupational hygiene. <i>Journal of Environmental Monitoring</i> , 2011 , 13, 1480-7		13	
81	Tumor-promoting cyanotoxin microcystin-LR does not induce procarcinogenic events in adult human liver stem cells. <i>Toxicology and Applied Pharmacology</i> , 2018 , 345, 103-113	4.6	12	
80	Reduction of dioxin-like toxicity in effluents by additional wastewater treatment and related effects in fish. <i>Ecotoxicology and Environmental Safety</i> , 2016 , 132, 47-58	7	12	
79	Metallothionein modulation in relation to cadmium bioaccumulation and age-dependent sensitivity of Chironomus riparius larvae. <i>Environmental Science and Pollution Research</i> , 2016 , 23, 10504-10513	5.1	12	
78	Dioxins and dioxin-like compounds in composts and digestates from European countries as determined by the in vitro bioassay and chemical analysis. <i>Chemosphere</i> , 2015 , 122, 168-175	8.4	12	
77	Accumulation of microcystins in Nile tilapia, Oreochromis niloticus L., and effects of a complex cyanobacterial bloom on the dietetic quality of muscles. <i>Bulletin of Environmental Contamination and Toxicology</i> , 2011 , 87, 26-30	2.7	12	
76	Chronic toxicity of contaminated sediments on reproduction and histopathology of the crustacean Gammarus fossarum and relationship with the chemical contamination and in vitro effects. <i>Journal of Soils and Sediments</i> , 2010 , 10, 423-433	3.4	12	
75	Assessment of silver nanoparticle toxicity for common carp (Cyprinus carpio) fish embryos using a novel method controlling the agglomeration in the aquatic media. <i>Environmental Science and Pollution Research</i> , 2015 , 22, 19124-32	5.1	11	
74	Environmentally relevant mixture of S-metolachlor and its two metabolites affects thyroid metabolism in zebrafish embryos. <i>Aquatic Toxicology</i> , 2020 , 221, 105444	5.1	10	
73	Tumor promoting effects of cyanobacterial extracts are potentiated by anthropogenic contaminantsevidence from in vitro study. <i>Chemosphere</i> , 2012 , 89, 30-7	8.4	10	
72	Geosmin occurrence in riverine cyanobacterial mats: is it causing a significant health hazard?. <i>Water Science and Technology</i> , 2004 , 49, 307-312	2.2	10	
71	. Environmental Toxicology and Chemistry, 2001 , 20, 2736	3.8	10	
70	Histopathology of Carp (Cyprinus carpio L.) Larvae Exposed to Cyanobacteria Extract. <i>Acta Veterinaria Brno</i> , 2004 , 73, 253-257	0.8	10	
69	Phytoestrogens in milk: Overestimations caused by contamination of the hydrolytic enzyme used during sample extraction. <i>Journal of Dairy Science</i> , 2016 , 99, 6973-6982	4	10	
68	Novel metabolites in cyanobacterium Cylindrospermopsis raciborskii with potencies to inhibit gap junctional intercellular communication. <i>Journal of Hazardous Materials</i> , 2013 , 262, 571-9	12.8	9	

(2020-2019)

67	Freshwater ecosystems profit from activated carbon-based wastewater treatment across various levels of biological organisation in a short timeframe. <i>Environmental Sciences Europe</i> , 2019 , 31,	5	9
66	The effects of nano-sized PbO on biomarkers of membrane disruption and DNA damage in a sub-chronic inhalation study on mice. <i>Nanotoxicology</i> , 2020 , 14, 214-231	5.3	9
65	Rapid in situ toxicity testing with luminescent bacteria Photorhabdus luminescens and Vibrio fischeri adapted to a small portable luminometer. <i>Environmental Science and Pollution Research</i> , 2017 , 24, 3748-3758	5.1	8
64	Inhibitors of arachidonic acid metabolism potentiate tumour necrosis factor-alpha-induced apoptosis in HL-60 cells. <i>European Journal of Pharmacology</i> , 2001 , 424, 1-11	5.3	8
63	Advanced oxidation processes for the removal of cyanobacterial toxins from drinking water. <i>Environmental Sciences Europe</i> , 2020 , 32,	5	8
62	An adverse outcome pathway based in vitro characterization of novel flame retardants-induced hepatic steatosis. <i>Environmental Pollution</i> , 2021 , 289, 117855	9.3	8
61	Assessment of non-derivatized EN-methylamino-l-alanine (BMAA) neurotoxin in free form in urine of patients with nonspecific neurological symptoms. <i>Toxicon</i> , 2017 , 133, 48-57	2.8	7
60	Critical assessment of the research outcomes of European birth cohorts: linking environmental factors with non-communicable diseases. <i>Public Health</i> , 2017 , 145, 136-145	4	7
59	Immunomodulatory effects of selected cyanobacterial peptides in vitro. <i>Toxicon</i> , 2018 , 149, 20-25	2.8	7
58	In vivo effects of microcystins and complex cyanobacterial biomass on rats (Rattus norvegicus var. alba): changes in immunological and haematological parameters. <i>Toxicon</i> , 2013 , 73, 1-8	2.8	7
57	Concentrations of microcystins in tissues of several fish species from freshwater reservoirs and ponds. <i>Environmental Monitoring and Assessment</i> , 2013 , 185, 9717-27	3.1	7
56	In vitro assessment of sex steroids and related compounds in water and sediments - a critical review. <i>Environmental Sciences: Processes and Impacts</i> , 2018 , 20, 270-287	4.3	7
55	Microbiotests for cyanobacterial toxins screening 2000 , 519-525		7
54	Cylindrospermopsin induces cellular stress and activation of ERK1/2 and p38 MAPK pathways in adult human liver stem cells. <i>Chemosphere</i> , 2019 , 227, 43-52	8.4	6
53	Antifouling performance of photocatalytic superhydrophobic coatings against Klebsormidium alga. <i>Journal of Environmental Chemical Engineering</i> , 2020 , 8, 104153	6.8	6
52	Stimulation of nonspecific immunity, haemopoiesis and protection of mice against radiation injury by 1-adamantylamide-L-alanyl-D-isoglutamine incorporated in liposomes. <i>International Immunopharmacology</i> , 2001 , 1, 167-75	5.8	6
51	Effects of Different Oxygen Saturation on Activity of Complex Biomass and Aqueous Crude Extract of Cyanobacteria During Embryonal Development in Carp (Cyprinus carpio L.). <i>Acta Veterinaria Brno</i> , 2007 , 76, 291-299	0.8	6
50	Cylindrospermopsin is effectively degraded in water by pulsed corona-like and dielectric barrier discharges. <i>Environmental Pollution</i> , 2020 , 266, 115423	9.3	6

49	Estrogenicity of chemical mixtures revealed by a panel of bioassays. <i>Science of the Total Environment</i> , 2021 , 785, 147284	10.2	6
48	Monitoring river sediments contaminated predominantly with polyaromatic hydrocarbons by chemical and in vitro bioassay techniques. <i>Environmental Toxicology and Chemistry</i> , 2001 , 20, 1499-506	3.8	6
47	Wastewater canal Vojlovica, industrial complex Pancevo, Serbia: Preliminary ecotoxicological assessment of contaminated sediment. <i>Journal of the Serbian Chemical Society</i> , 2011 , 76, 459-478	0.9	5
46	Multiple stressors for the environment: Present and future challenges and perspectives. <i>Environmental Science and Pollution Research</i> , 2007 , 14, 222-222	5.1	5
45	In vitro evaluation of the permeation of cytotoxic drugs through reconstructed human epidermis and oral epithelium. <i>Klinicka Onkologie</i> , 2011 , 24, 195-202	2	5
44	Chlorination and ozonation reduce microcystin content and tumour promoting activity of complex cyanobacterial extract. <i>Advances in Oceanography and Limnology</i> , 2017 , 8,	1.3	4
43	Screening Assessment of Cyanobacterial Embryotoxicity to Japanese Medaka, Oryzias Latipes (Actinopterygii: Beloniformes: Adrianichthyidae). <i>Acta Ichthyologica Et Piscatoria</i> , 2011 , 41, 293-299	1.8	4
42	Ready to go 3D? A semi-automated protocol for microwell spheroid arrays to increase scalability and throughput of 3D cell culture testing. <i>Toxicology Mechanisms and Methods</i> , 2020 , 30, 590-604	3.6	4
41	The efficiency of antineoplastic drug contamination removal by widely used disinfectants-laboratory and hospital studies. <i>International Archives of Occupational and Environmental Health</i> , 2021 , 94, 1687-1702	3.2	4
40	Freshwater Cyanotoxin Cylindrospermopsin Has Detrimental Stage-specific Effects on Hepatic Differentiation From Human Embryonic Stem Cells. <i>Toxicological Sciences</i> , 2019 , 168, 241-251	4.4	4
39	Comparison of imidacloprid, propiconazole, and nanopropiconazole effects on the development, behavior, and gene expression biomarkers of the Pacific oyster (Magallana gigas). <i>Science of the Total Environment</i> , 2021 , 764, 142921	10.2	4
38	Branched Poly(ethylene imine)s as Anti-algal and Anti-cyanobacterial Agents with Selective Flocculation Behavior to Cyanobacteria over Algae. <i>Macromolecular Bioscience</i> , 2018 , 18, e1800187	5.5	4
37	Novel rapid in vitro cytotoxicity test on mammalian cells based on an electrochemical measuring method. <i>Journal of Applied Electrochemistry</i> , 2014 , 44, 935-943	2.6	3
36	Hospitals and Pharmacies as Sources of Contamination by Cytostatic Pharmaceuticals: Long-Term Monitoring in the Czech Republic 2020 , 57-70		3
35	Chromosomal Aberrations in Early Embryos of Weatherfish (Misgurnus fossilis L.) Exposed to Crude Cyanobacterial Extract and Semipurified Compound of Microcystins - a Pilot Study. <i>Acta Veterinaria Brno</i> , 2007 , 76, S55-S60	0.8	3
34	. Environmental Toxicology and Chemistry, 2001 , 20, 1499	3.8	3
33	Endocrine disrupting potential of replacement flame retardants - Review of current knowledge for nuclear receptors associated with reproductive outcomes. <i>Environment International</i> , 2021 , 153, 106550	0 ^{12.9}	3
32	Multiple oxidative stress parameters are modulated in vitro by oxygenated polycyclic aromatic hydrocarbons identified in river sediments. <i>Advances in Experimental Medicine and Biology</i> , 2001 , 500, 225-8	3.6	3

(2021-2013)

31	Biochemical and histopathological responses of Wistar rats to oral intake of microcystins and cyanobacterial biomass. <i>Neuroendocrinology Letters</i> , 2013 , 34 Suppl 2, 11-20	0.3	3
30	Can cyanobacterial biomass applied to soil affect survival and reproduction of springtail Folsomia candida?. <i>Ecotoxicology and Environmental Safety</i> , 2011 , 74, 840-3	7	2
29	Stratification strength and light climate explain variation in chlorophyll a at the continental scale in a European multilake survey in a heatwave summer. <i>Limnology and Oceanography</i> , 2021 , 66, 4314	4.8	2
28	Treatment of cylindrospermopsin by hydroxyl and sulfate radicals: Does degradation equal detoxification?. <i>Journal of Hazardous Materials</i> , 2022 , 424, 127447	12.8	2
27	Occurrence of cylindrospermopsin, anatoxin-a and their homologs in the southern Czech Republic - Taxonomical, analytical, and molecular approaches. <i>Harmful Algae</i> , 2021 , 108, 102101	5.3	2
26	Toxicity increases in ice containing monochlorophenols upon photolysis: environmental consequences. <i>Environmental Science & Environmental Science & E</i>	10.3	2
25	Geosmin occurrence in riverine cyanobacterial mats: is it causing a significant health hazard?. <i>Water Science and Technology</i> , 2004 , 49, 307-12	2.2	2
24	The exposome and toxicology: a win-win collaboration. <i>Toxicological Sciences</i> , 2021 ,	4.4	2
23	Other Cyanobacterial Bioactive Substances 2017 , 179-195		1
22	Bioassay Use in the Field of Toxic Cyanobacteria 2017 , 272-279		1
21	Extraction of Microcystins from Animal Tissues 2017 , 358-361		1
20	Extraction, Purification, and Testing of LPS from Cyanobacterial Samples 2017, 447-451		1
19	Cell-based data to predict the toxicity of chemicals to fish. Commentary on the manuscript by Rodrigues etlal., 2019. Cell-based assays seem not to accurately predict fish short-term toxicity of pesticides. Environmental Pollution 252:476-482. <i>Environmental Pollution</i> , 2019 , 254, 113060	9.3	1
18	Toxic effects of metals on two euryhaline ciliate species adapted to variable salinities. <i>Biologia</i> (<i>Poland</i>), 2015 , 70, 486-494	1.5	1
17	Multiple stressors for the environment: Present and future challenges and perspectives. <i>Journal of Soils and Sediments</i> , 2007 , 7, 272-272	3.4	1
16	Web portal for management of bioindication methods and ecotoxicological tests in ecological risk assessment. <i>Ecotoxicology</i> , 2006 , 15, 623-7	2.9	1
15	Levels and risks of surface contamination by thirteen antineoplastic drugs in the Czech and Slovak hospitals and pharmacies. <i>Environmental Science and Pollution Research</i> , 2021 , 1	5.1	1
14	Flame Retardants-Mediated Interferon Signaling in the Pathogenesis of Nonalcoholic Fatty Liver Disease. <i>International Journal of Molecular Sciences</i> , 2021 , 22,	6.3	1

13	Pesticide mixture toxicity assessment through in situ and laboratory approaches using embryo-larval stages of the pacific oyster (Magallana gigas). <i>Marine Environmental Research</i> , 2021 , 169, 105390	3.3	1
12	Synthetic Biomimetic Polymethacrylates: Promising Platform for the Design of Anti-Cyanobacterial and Anti-Algal Agents. <i>Polymers</i> , 2021 , 13,	4.5	1
11	Instrumental and bioanalytical assessment of pharmaceuticals and hormone-like compounds in a major drinking water source-wastewater receiving Zayandeh Rood river, Iran. <i>Environmental Science and Pollution Research</i> , 2021 , 1	5.1	1
10	Innovative electrochemical biosensor for toxicological investigations on algae and cyanobacteria. <i>Bioelectrochemistry</i> , 2022 , 143, 107926	5.6	1
9	The effect of peroral administration of toxic cyanobacteria on laboratory rats (Rattus norvegicus var. alba). <i>Neuroendocrinology Letters</i> , 2011 , 32 Suppl 1, 35-45	0.3	1
8	Fish tapeworm Khawia sinensis: an indicator of environmental microcystins?. <i>Neuroendocrinology Letters</i> , 2013 , 34 Suppl 2, 21-4	0.3	1
7	Effect of arsenic and cyanobacterial co-exposure on pathological, haematological and immunological parameters of rainbow trout (Oncorhynchus mykiss). <i>Neuroendocrinology Letters</i> , 2015 , 36 Suppl 1, 57-63	0.3	1
6	Analysis of Microcystins in Animal Tissues Using LC-MS/MS 2017 , 385-389		
5	RECETOX (Brno, Czech Republic)history, aims and activities. <i>Environmental Science and Pollution Research</i> , 2004 , 11, 136	5.1	
4	Ecotoxicology of Environmental Pollutants. <i>Applied Environmental Science and Engineering for A Sustainable Future</i> , 2020 , 549-572	0.5	
3	CETOCOEN Project: From the Laboratory to the Field and Beyond. <i>IFIP Advances in Information and Communication Technology</i> , 2011 , 491-499	0.5	
2	Macromol. Biosci. 10/2018. <i>Macromolecular Bioscience</i> , 2018 , 18, 1870027	5.5	
1	The effectiveness of widely used disinfectants in removing contamination with cytotoxic drugs. Hygiena, 2022 , 67, 20-27	0.2	