Subhankar Maity

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5896115/publications.pdf Version: 2024-02-01

SUBHANKAD MAITY

#	Article	IF	CITATIONS
1	Influence of Needle-punching Parameters for the Preparation of Polypyrrole-coated Non-woven Composites for Heat Generation. Tekstilec, 2023, 64, 172-183.	0.6	3
2	A review on the development of conjugated polymer-based textile thermoelectric generator. Journal of Industrial Textiles, 2022, 51, 181S-214S.	2.4	12
3	Biotechnological and nano-biotechnological approaches in finishing of textile materials. , 2022, , 173-186.		1
4	Sodium Lignosulfonate: an Industrial Bio-Waste for the Colouration and UV Protective Finish of Nylon Fabric. Fibres and Textiles in Eastern Europe, 2022, 30, 77-85.	0.5	1
5	Stress relaxation and elastic recovery behaviour of dual core stretchable ring spun yarn. Journal of Textile Engineering & Fashion Technology, 2022, 8, 31-36.	0.3	2
6	Waterproof breathable fabrics and suits. , 2022, , 347-375.		1
7	Introduction to protective textiles. , 2022, , 3-38.		2
8	A review on polypyrrole-coated bio-composites for the removal of heavy metal traces from waste water. Journal of Industrial Textiles, 2021, 51, 152-173.	2.4	21
9	Thermal Insulation Behavior of Chemically Treated Jute Fiber Quilt. Journal of Natural Fibers, 2021, 18, 568-580.	3.1	10
10	Advanced applications of green materials in electromagnetic shielding. , 2021, , 265-292.		3
11	Advanced applications of green materials in wearable e-textiles. , 2021, , 239-263.		Ο
12	Nanotechnologies for wastewater treatment. , 2021, , 1-12.		0
13	Zero liquid discharge wastewater treatment technologies. , 2021, , 209-234.		2
14	Water footprint applications in textile sector: anÂoverview. , 2021, , 1-16.		1
15	Treatment of textile wastewater by agricultural waste biomasses. , 2021, , 137-156.		3
16	Chitosan-based bionanocomposites in medical textile. , 2021, , 293-308.		0
17	Potential biodegradable face mask to counter environmental impact of Covid-19. Cleaner Engineering and Technology, 2021, 4, 100218.	4.0	38
18	Extraction and characterization of novel Sterculia foetida fruit shell fibre for composite applications. Cleaner Engineering and Technology, 2021, 4, 100194.	4.0	6

#	Article	IF	CITATIONS
19	Green chemistry in textile and fashion. , 2021, , 177-203.		4
20	Textile wastewater management. , 2021, , 417-427.		1
21	Harmful environmental effects for textile chemical dyeing practice. , 2021, , 153-164.		16
22	Conjugated polymer-coated novel bioadsorbents for wastewater treatment. , 2021, , 157-185.		0
23	Chemical risk assessment in textile and fashion. , 2021, , 53-78.		1
24	Elastic Recovery and Performance of Denim Fabric Prepared by Cotton/Lycra Core Spun Yarns. Journal of Natural Fibers, 2020, 17, 1184-1198.	3.1	10
25	Advanced ultraviolet protective agents for textiles and clothing. , 2020, , 243-260.		6
26	Advanced flame-retardant agents for protective textiles and clothing. , 2020, , 397-414.		3
27	Advanced electromagnetic interference shielding textiles and clothing. , 2020, , 457-491.		3
28	Green synthesis of nanoparticle and its application on cotton fabric using Sterculia foetida fruit shell extract. Journal of Textile Engineering & Fashion Technology, 2020, 6, .	0.3	1
29	Self-cleaning Finishes for Functional and Value Added Textile Materials. Textile Science and Clothing Technology, 2020, , 217-229.	0.5	3
30	Performance of Natural Fibre Nonwoven for Oil Sorption from Sea Water. Tekstilec, 2020, 63, 14-26.	0.6	0
31	Effects of Process Parameters on Tensile and Recovery Behavior of Ring-Spun Cotton/Lycra Denim Yarn. Journal of the Institution of Engineers (India): Series E, 2019, 100, 37-45.	0.9	8
32	Optimization of material and process parameters of fibrous quilt for comfortable heat loss from human body. Journal of the Textile Institute, 2019, 110, 873-881.	1.9	9
33	Thermal Resistance and Moisture Management Behaviour of Nettle/Polyester Nonwoven Fabrics. Tekstilec, 2019, 62, 258-268.	0.6	4
34	Conductive polymer-based electro-conductive textile composites for electromagnetic interference shielding: A review. Journal of Industrial Textiles, 2018, 47, 2228-2252.	2.4	112
35	Polypyrrole functionalized polyester needlepunched nonwoven fabrics for electroâ€magnetic interference shielding. Polymer Composites, 2018, 39, 3696-3704.	4.6	18
36	Electro-conductive Palmyra Fibers By In Situ Polymerization of Pyrrole. Journal of Natural Fibers, 2017, 14, 185-195.	3.1	5

SUBHANKAR MAITY

#	Article	IF	CITATIONS
37	Influence of graphene oxide concentration and dipping cycles on electrical conductivity of coated cotton textiles. Journal of the Textile Institute, 2017, 108, 1910-1916.	1.9	39
38	Tensile and Elastic Performance of Cotton/Lycra Core Spun Denim Yarn. Journal of the Institution of Engineers (India): Series E, 2017, 98, 71-78.	0.9	17
39	Optimization of processing parameters of in-situ polymerization of pyrrole on woollen textile to improve its thermal conductivity. Progress in Organic Coatings, 2017, 107, 48-53.	3.9	33
40	A comparative study of reaction kinetics of in-situ chemical polymerization of polypyrrole onto various textile fibres. Surface and Coatings Technology, 2017, 324, 569-576.	4.8	24
41	Jute Needlepunched Nonwovens: Manufacturing, Properties, and Applications. Journal of Natural Fibers, 2016, 13, 383-396.	3.1	11
42	Reinforcements and Composites with Special Properties. Textile Science and Clothing Technology, 2016, , 317-373.	0.5	1
43	Textile/Polypyrrole Composites for Sensory Applications. Journal of Composites, 2015, 2015, 1-6.	0.8	18
44	Polypyrroleâ€silk electroâ€conductive composite fabric by <i>in situ</i> chemical polymerization. Journal of Applied Polymer Science, 2015, 132, .	2.6	42
45	A Review of Flax Nonwovens: Manufacturing, Properties, and Applications. Journal of Natural Fibers, 2014, 11, 365-390.	3.1	53
46	Polypyrrole based electro-conductive textiles for heat generation. Journal of the Textile Institute, 2014, 105, 887-893.	1.9	69
47	Polypyrrole Based Electro-Conductive Cotton Yarn. Journal of Textile Science & Engineering, 2014, 04, .	0.2	5
48	Studies on electro-conductive fabrics prepared by in situ chemical polymerization of mixtures of pyrrole and thiophene onto polyester. Fibers and Polymers, 2013, 14, 345-351.	2.1	19
49	Preparation and characterization of electro-conductive rotor yarn by in situ chemical polymerization of pyrrole. Fibers and Polymers, 2013, 14, 1407-1413.	2.1	28
50	Structure-Property Relationships of Needle-Punched Nonwoven Fabric. Frontiers in Science, 2013, 2, 226-234.	1.0	25
51	The Salt-Free Dyeing on Cotton: An Approach to Effluent Free Mechanism; Can Chitosan be a Potential Option?. International Journal of Textile Science, 2013, 1, 69-77.	0.3	29
52	Jute Composites as Wood Substitute. International Journal of Textile Science, 2013, 1, 84-93.	0.3	80
53	Textiles in Earth-Quake Resistant Constructions. Journal of Textile Science & Engineering, 2012, 02, .	0.2	1
54	Computer Simulations of Textile Non-Woven Structures. Frontiers in Science, 2012, 2, 11-17.	1.0	8

4

#	Article	IF	CITATIONS
55	Spinning and Applications of Spider Silk. Frontiers in Science, 2012, 2, 92-100.	1.0	15