Dekang Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5895861/publications.pdf Version: 2024-02-01

DEKANC 7HIL

#	Article	IF	CITATIONS
1	Development of an indirect ELISA method based on the VP4 protein for detection antibody against duck hepatitis A virus type 1. Journal of Virological Methods, 2022, 300, 114393.	2.1	1
2	Decreased virulence of duck Tembusu virus harboring a mutant NS2A with impaired interaction with STING and IFNÎ ² induction. Veterinary Microbiology, 2022, 265, 109312.	1.9	0
3	The lysine at position 151 of the duck hepatitis A virus 1 2C protein is critical for its NTPase activities. Veterinary Microbiology, 2022, 264, 109300.	1.9	3
4	RAA Enzyme Is a New Family of Class A Extended-Spectrum β-Lactamase from Riemerella anatipestifer Strain RCAD0122. Antimicrobial Agents and Chemotherapy, 2022, 66, AAC0175721.	3.2	5
5	Immunogenicity and protection of a Pasteurella multocida strain with a truncated lipopolysaccharide outer core in ducks. Veterinary Research, 2022, 53, 17.	3.0	5
6	Duck plague virus UL41 protein inhibits RIG-I/MDA5-mediated duck IFN-Î ² production via mRNA degradation activity. Veterinary Research, 2022, 53, 22.	3.0	2
7	The protein encoded by the duck plague virus UL14 gene regulates virion morphogenesis and affects virial replication. Poultry Science, 2022, 101, 101863.	3.4	0
8	The C92 NS2B mutant of Tembusu virus is involved in severe defects in progeny virus assembly. Veterinary Microbiology, 2022, 267, 109396.	1.9	0
9	Evaluation of the Safety and Immunogenicity of Duck-Plague Virus gE Mutants. Frontiers in Immunology, 2022, 13, 882796.	4.8	6
10	Characterization of RASA-1, a novel class A extended-spectrum beta-lactamase from Riemerella anatipestifer. Veterinary Microbiology, 2022, 270, 109456.	1.9	6
11	Assembly-defective Tembusu virus ectopically expressing capsid protein is an approach for live-attenuated flavivirus vaccine development. Npj Vaccines, 2022, 7, 51.	6.0	1
12	Role of the homologous MTase-RdRp interface of flavivirus intramolecular NS5 on duck tembusu virus. Veterinary Microbiology, 2022, 269, 109433.	1.9	2
13	RNA-Seq analysis of duck embryo fibroblast cells gene expression during duck Tembusu virus infection. Veterinary Research, 2022, 53, 34.	3.0	2
14	Features and Functions of the Conserved Herpesvirus Tegument Protein UL11 and Its Binding Partners. Frontiers in Microbiology, 2022, 13, .	3.5	1
15	Identification of duck GSDME: Tissue distribution, proteolysis and cellular location. Cytokine, 2022, 156, 155925.	3.2	2
16	The autophagyâ€related degradation of MDA5 by Tembusu virus nonstructural 2B disrupts IFNβ production. FASEB Journal, 2022, 36, .	0.5	1
17	The substitution at residue 218 of the NS5 protein methyltransferase domain of Tembusu virus impairs viral replication and translation and may triggers RIG-I-like receptor signaling. Poultry Science, 2022, 101, 102017.	3.4	2
18	Duck hepatitis A virus type 1 mediates cell cycle arrest in the S phase. Virology Journal, 2022, 19, .	3.4	2

#	Article	IF	CITATIONS
19	Duck Tembusu virus infection induces mitochondrial-mediated and death receptor-mediated apoptosis in duck embryo fibroblasts. Veterinary Research, 2022, 53, .	3.0	2
20	A proposed disease classification system for duck viral hepatitis. Poultry Science, 2022, , 102042.	3.4	0
21	Two nuclear localization signals regulate intracellular localization of the duck enteritis virus UL13 protein. Poultry Science, 2021, 100, 26-38.	3.4	2
22	Immunogenicity and protection efficacy of a Salmonella enterica serovar Typhimurium fnr, arcA and fliC mutant. Vaccine, 2021, 39, 588-595.	3.8	10
23	The Roles of Envelope Glycoprotein M in the Life Cycle of Some Alphaherpesviruses. Frontiers in Microbiology, 2021, 12, 631523.	3.5	2
24	Natural Transformation of Riemerella columbina and Its Determinants. Frontiers in Microbiology, 2021, 12, 634895.	3.5	4
25	Functional characterization of Fur in iron metabolism, oxidative stress resistance and virulence of Riemerella anatipestifer. Veterinary Research, 2021, 52, 48.	3.0	11
26	The lipopolysaccharide outer core transferase genes pcgD and hptE contribute differently to the virulence of Pasteurella multocida in ducks. Veterinary Research, 2021, 52, 37.	3.0	6
27	Duck Hepatitis A Virus Type 1 Induces elF2α Phosphorylation-Dependent Cellular Translation Shutoff via PERK/GCN2. Frontiers in Microbiology, 2021, 12, 624540.	3.5	5
28	DPV UL41 gene encoding protein induces host shutoff activity and affects viral replication. Veterinary Microbiology, 2021, 255, 108979.	1.9	8
29	Amelioration of Beta Interferon Inhibition by NS4B Contributes to Attenuating Tembusu Virus Virulence in Ducks. Frontiers in Immunology, 2021, 12, 671471.	4.8	5
30	Tracing genetic signatures of batâ€toâ€human coronaviruses and early transmission of North American SARSâ€CoVâ€2. Transboundary and Emerging Diseases, 2021, , .	3.0	3
31	SC75741 antagonizes vesicular stomatitis virus, duck Tembusu virus, and duck plague virus infection in duck cells through promoting innate immune responses. Poultry Science, 2021, 100, 101085.	3.4	5
32	Molecular cloning of duck CD40 and its immune function research. Poultry Science, 2021, 100, 101100.	3.4	0
33	The intracellular domain of duck plague virus glycoprotein E affects UL11 protein incorporation into viral particles. Veterinary Microbiology, 2021, 257, 109078.	1.9	10
34	Substitutions at Loop Regions of TMUV E Protein Domain III Differentially Impair Viral Entry and Assembly. Frontiers in Microbiology, 2021, 12, 688172.	3.5	1
35	Multifaceted Roles of ICP22/ORF63 Proteins in the Life Cycle of Human Herpesviruses. Frontiers in Microbiology, 2021, 12, 668461.	3.5	6
36	An Exposed Outer Membrane Hemin-Binding Protein Facilitates Hemin Transport by a TonB-Dependent Receptor in Riemerella anatipestifer. Applied and Environmental Microbiology, 2021, 87, e0036721.	3.1	9

#	Article	IF	CITATIONS
37	Effect of Nutritional Determinants and TonB on the Natural Transformation of Riemerella anatipestifer. Frontiers in Microbiology, 2021, 12, 644868.	3.5	4
38	Emergence of a novel pegivirus species in southwest China showing a high rate of coinfection with parvovirus and circovirus in geese. Poultry Science, 2021, 100, 101251.	3.4	5
39	Replication/Assembly Defective Avian Flavivirus With Internal Deletions in the Capsid Can Be Used as an Approach for Living Attenuated Vaccine. Frontiers in Immunology, 2021, 12, 694959.	4.8	4
40	Distribution and association of antimicrobial resistance and virulence traits in Escherichia coli isolates from healthy waterfowls in Hainan, China. Ecotoxicology and Environmental Safety, 2021, 220, 112317.	6.0	21
41	Identification of the Natural Transformation Genes in Riemerella anatipestifer by Random Transposon Mutagenesis. Frontiers in Microbiology, 2021, 12, 712198.	3.5	3
42	Putative Riemerella anatipestifer Outer Membrane Protein H Affects Virulence. Frontiers in Microbiology, 2021, 12, 708225.	3.5	7
43	Construction of an Infectious Clone for Mosquito-Derived Tembusu Virus Prototypical Strain. Virologica Sinica, 2021, 36, 1678-1681.	3.0	3
44	N130, N175 and N207 are N-linked glycosylation sites of duck Tembusu virus NS1 that are important for viral multiplication, viremia and virulence in ducklings. Veterinary Microbiology, 2021, 261, 109215.	1.9	8
45	High incidence of multi-drug resistance and heterogeneity of mobile genetic elements in Escherichia coli isolates from diseased ducks in Sichuan province of China. Ecotoxicology and Environmental Safety, 2021, 222, 112475.	6.0	9
46	Nuclear localization of duck Tembusu virus NS5 protein attenuates viral replication in vitro and NS5-NS2B3 interaction. Veterinary Microbiology, 2021, 262, 109239.	1.9	4
47	Motif C in nonstructural protein 5 of duck Tembusu virus is essential for viral proliferation. Veterinary Microbiology, 2021, 262, 109224.	1.9	О
48	The activation and limitation of the bacterial natural transformation system: The function in genome evolution and stability. Microbiological Research, 2021, 252, 126856.	5.3	8
49	Updates on the global dissemination of colistin-resistant Escherichia coli: An emerging threat to public health. Science of the Total Environment, 2021, 799, 149280.	8.0	32
50	Comparative genomics and metabolomics analysis of Riemerella anatipestifer strain CH-1 and CH-2. Scientific Reports, 2021, 11, 616.	3.3	3
51	Methyltransferase-Deficient Avian Flaviviruses Are Attenuated Due to Suppression of Viral RNA Translation and Induction of a Higher Innate Immunity. Frontiers in Immunology, 2021, 12, 751688.	4.8	3
52	DHAV-1 Blocks the Signaling Pathway Upstream of Type I Interferon by Inhibiting the Interferon Regulatory Factor 7 Protein. Frontiers in Microbiology, 2021, 12, 700434.	3.5	6
53	The LORF5 Gene Is Non-essential for Replication but Important for Duck Plague Virus Cell-to-Cell Spread Efficiently in Host Cells. Frontiers in Microbiology, 2021, 12, 744408.	3.5	4
54	ICP22/IE63 Mediated Transcriptional Regulation and Immune Evasion: Two Important Survival Strategies for Alphaherpesviruses. Frontiers in Immunology, 2021, 12, 743466.	4.8	2

#	Article	IF	CITATIONS
55	UL11 Protein Is a Key Participant of the Duck Plague Virus in Its Life Cycle. Frontiers in Microbiology, 2021, 12, 792361.	3.5	5
56	Emergence of a multidrug-resistant hypervirulent Pasteurella multocida ST342 strain with a floR-carrying plasmid. Journal of Global Antimicrobial Resistance, 2020, 20, 348-350.	2.2	12
57	Pan-genome analysis of Riemerella anatipestifer reveals its genomic diversity and acquired antibiotic resistance associated with genomic islands. Functional and Integrative Genomics, 2020, 20, 307-320.	3.5	8
58	Duck enteritis virus UL21 is a late gene encoding a protein that interacts with pUL16. BMC Veterinary Research, 2020, 16, 8.	1.9	8
59	Development of a simple and rapid immunochromatographic strip test for detecting duck plague virus antibodies based on gl protein. Journal of Virological Methods, 2020, 277, 113803.	2.1	4
60	Comparison of immunohistochemistry and Ziehlâ€Neelsen staining for detecting the distribution of <i>Mycobacterium avium</i> subsp <i>avium</i> in naturally infected domestic Pekin ducks (<i>Anas) Tj ETQqO</i>	0 0.6 gBT /(Oværlock 10 ⁻
61	SOCS Proteins Participate in the Regulation of Innate Immune Response Caused by Viruses. Frontiers in Immunology, 2020, 11, 558341.	4.8	41
62	Duck enteritis virus pUL47, as a late structural protein localized in the nucleus, mainly depends on residues 40 to 50 and 768 to 777 and inhibits IFN-β signalling by interacting with STAT1. Veterinary Research, 2020, 51, 135.	3.0	8
63	The First Nonmammalian Pegivirus Demonstrates Efficient In Vitro Replication and High Lymphotropism. Journal of Virology, 2020, 94, .	3.4	9
64	The functional identification of Dps in oxidative stress resistance and virulence of Riemerella anatipestifer CH-1 using a new unmarked gene deletion strategy. Veterinary Microbiology, 2020, 247, 108730.	1.9	14
65	Determinants of duck Tembusu virus NS2A/2B polyprotein procession attenuated viral replication and proliferation in vitro. Scientific Reports, 2020, 10, 12423.	3.3	0
66	Enterovirus Replication Organelles and Inhibitors of Their Formation. Frontiers in Microbiology, 2020, 11, 1817.	3.5	21
67	Structures and Functions of the 3′ Untranslated Regions of Positive-Sense Single-Stranded RNA Viruses Infecting Humans and Animals. Frontiers in Cellular and Infection Microbiology, 2020, 10, 453.	3.9	23
68	Alphaherpesvirus Major Tegument Protein VP22: Its Precise Function in the Viral Life Cycle. Frontiers in Microbiology, 2020, 11, 1908.	3.5	13
69	The Role of VP16 in the Life Cycle of Alphaherpesviruses. Frontiers in Microbiology, 2020, 11, 1910.	3.5	21
70	Research Note: Duck plague virus glycoprotein I influences cell–cell spread and final envelope acquisition. Poultry Science, 2020, 99, 6647-6652.	3.4	1
71	Host shutoff activity of VHS and SOX-like proteins: role in viral survival and immune evasion. Virology Journal, 2020, 17, 68.	3.4	13
72	Development and evaluation of an indirect ELISA based on recombinant structural protein VP2 to detect antibodies against duck hepatitis A virus. Journal of Virological Methods, 2020, 282, 113903.	2.1	2

#	Article	IF	CITATIONS
73	Duck Tembusu virus promotes the expression of suppressor of cytokine signaling 1 by downregulating miR-148a-5p to facilitate virus replication. Infection, Genetics and Evolution, 2020, 85, 104392.	2.3	6
74	cis -Acting Sequences and Secondary Structures in Untranslated Regions of Duck Tembusu Virus RNA Are Important for Cap-Independent Translation and Viral Proliferation. Journal of Virology, 2020, 94, .	3.4	10
75	Regulation of Apoptosis by Enteroviruses. Frontiers in Microbiology, 2020, 11, 1145.	3.5	11
76	Duck Enteritis Virus VP16 Antagonizes IFN- <i>β</i> -Mediated Antiviral Innate Immunity. Journal of Immunology Research, 2020, 2020, 1-13.	2.2	5
77	Duck IFIT5 differentially regulates Tembusu virus replication and inhibits virus-triggered innate immune response. Cytokine, 2020, 133, 155161.	3.2	7
78	Stabilization of a full-length infectious cDNA clone for duck Tembusu virus by insertion of an intron. Journal of Virological Methods, 2020, 283, 113922.	2.1	13
79	Isolation and Selection of Duck Primary Cells as Pathogenic and Innate Immunologic Cell Models for Duck Plague Virus. Frontiers in Immunology, 2020, 10, 3131.	4.8	9
80	DEF Cell-Derived Exosomal miR-148a-5p Promotes DTMUV Replication by Negative Regulating TLR3 Expression. Viruses, 2020, 12, 94.	3.3	12
81	Autophagy Promotes Duck Tembusu Virus Replication by Suppressing p62/SQSTM1-Mediated Innate Immune Responses In Vitro. Vaccines, 2020, 8, 22.	4.4	9
82	Duplicate US1 Genes of Duck Enteritis Virus Encode a Non-essential Immediate Early Protein Localized to the Nucleus. Frontiers in Cellular and Infection Microbiology, 2020, 9, 463.	3.9	9
83	The Pivotal Roles of US3 Protein in Cell-to-Cell Spread and Virion Nuclear Egress of Duck Plague Virus. Scientific Reports, 2020, 10, 7181.	3.3	15
84	Autophagy Is a Potential Therapeutic Target Against Duck Tembusu Virus Infection in vivo. Frontiers in Cellular and Infection Microbiology, 2020, 10, 155.	3.9	2
85	Duck Tembusu Virus Utilizes miR-221-3p Expression to Facilitate Viral Replication via Targeting of Suppressor of Cytokine Signaling 5. Frontiers in Microbiology, 2020, 11, 596.	3.5	7
86	Duck plague virus gE serves essential functions during the virion final envelopment through influence capsids budding into the cytoplasmic vesicles. Scientific Reports, 2020, 10, 5658.	3.3	10
87	Binding of Duck Tembusu Virus Nonstructural Protein 2A to Duck STING Disrupts Induction of Its Signal Transduction Cascade To Inhibit Beta Interferon Induction. Journal of Virology, 2020, 94, .	3.4	32
88	Emergence of Escherichia coli isolates producing NDM-1 carbapenemase from waterfowls in Hainan island, China. Acta Tropica, 2020, 207, 105485.	2.0	4
89	Universal RNA Secondary Structure Insight Into Mosquito-Borne Flavivirus (MBFV) cis-Acting RNA Biology. Frontiers in Microbiology, 2020, 11, 473.	3.5	7
90	Transcriptome analysis of duck embryo fibroblasts for the dynamic response to duck tembusu virus infection and dual regulation of apoptosis genes. Aging, 2020, 12, 17503-17527.	3.1	10

#	Article	IF	CITATIONS
91	Duck interferon regulatory factor 7 (IRF7) can control duck Tembusu virus (DTMUV) infection by triggering type I interferon production and its signal transduction pathway. Cytokine, 2019, 113, 31-38.	3.2	31
92	Class 1 integrons as predominant carriers in Escherichia coli isolates from waterfowls in Hainan, China. Ecotoxicology and Environmental Safety, 2019, 183, 109514.	6.0	20
93	DprA Is Essential for Natural Competence in Riemerella anatipestifer and Has a Conserved Evolutionary Mechanism. Frontiers in Genetics, 2019, 10, 429.	2.3	15
94	Role of LptD in Resistance to Glutaraldehyde and Pathogenicity in Riemerella anatipestifer. Frontiers in Microbiology, 2019, 10, 1443.	3.5	6
95	Therapeutic effects of duck Tembusu virus capsid protein fused with staphylococcal nuclease protein to target Tembusu infection in vitro. Veterinary Microbiology, 2019, 235, 295-300.	1.9	7
96	Development of a markerless gene deletion strategy using rpsL as a counterselectable marker and characterization of the function of RAOC_1534 in Riemerella anatipestifer ATCC11845 using this strategy. PLoS ONE, 2019, 14, e0218241.	2.5	4
97	Flavivirus RNA-Dependent RNA Polymerase Interacts with Genome UTRs and Viral Proteins to Facilitate Flavivirus RNA Replication. Viruses, 2019, 11, 929.	3.3	19
98	Binding of the Duck Tembusu Virus Protease to STING Is Mediated by NS2B and Is Crucial for STING Cleavage and for Impaired Induction of IFN-β. Journal of Immunology, 2019, 203, 3374-3385.	0.8	56
99	Apoptosis and Autophagy in Picornavirus Infection. Frontiers in Microbiology, 2019, 10, 2032.	3.5	20
100	Innate Immune Evasion of Alphaherpesvirus Tegument Proteins. Frontiers in Immunology, 2019, 10, 2196.	4.8	35
101	Mutations in VPO and 2C Proteins of Duck Hepatitis A Virus Type 3 Attenuate Viral Infection and Virulence. Vaccines, 2019, 7, 111.	4.4	5
102	Role of the gldK gene in the virulence of Riemerella anatipestifer. Poultry Science, 2019, 98, 2414-2421.	3.4	9
103	Comparative analysis reveals the Genomic Islands in Pasteurella multocida population genetics: on Symbiosis and adaptability. BMC Genomics, 2019, 20, 63.	2.8	9
104	Amyloid A amyloidosis secondary to avian tuberculosis in naturally infected domestic pekin ducks (Anas platyrhynchos domestica). Comparative Immunology, Microbiology and Infectious Diseases, 2019, 63, 136-141.	1.6	2
105	Genetically stable reporter virus, subgenomic replicon and packaging system of duck Tembusu virus based on a reverse genetics system. Virology, 2019, 533, 86-92.	2.4	20
106	First Report of Integrative Conjugative Elements in Riemerella anatipestifer Isolates From Ducks in China. Frontiers in Veterinary Science, 2019, 6, 128.	2.2	10
107	Rifampin resistance and its fitness cost in Riemerella anatipestifer. BMC Microbiology, 2019, 19, 107.	3.3	13
108	New Perspectives on Galleria mellonella Larvae as a Host Model Using Riemerella anatipestifer as a Proof of Concept. Infection and Immunity, 2019, 87, .	2.2	13

#	Article	IF	CITATIONS
109	Biochemical characterization of recombinant Avihepatovirus 3C protease and its localization. Virology Journal, 2019, 16, 54.	3.4	10
110	Alpha-Herpesvirus Thymidine Kinase Genes Mediate Viral Virulence and Are Potential Therapeutic Targets. Frontiers in Microbiology, 2019, 10, 941.	3.5	38
111	Comparative genomeâ€scale modelling of the pathogenic Flavobacteriaceae species <i>Riemerella anatipestifer</i> in China. Environmental Microbiology, 2019, 21, 2836-2851.	3.8	13
112	DHAV-1 Inhibits Type I Interferon Signaling to Assist Viral Adaption by Increasing the Expression of SOCS3. Frontiers in Immunology, 2019, 10, 731.	4.8	15
113	Molecular characterization and antiapoptotic function analysis of the duck plague virus Us5 gene. Scientific Reports, 2019, 9, 4851.	3.3	13
114	High prevalence of CTX-M belonging to ST410 and ST889 among ESBL producing E. coli isolates from waterfowl birds in China's tropical island, Hainan. Acta Tropica, 2019, 194, 30-35.	2.0	18
115	Growth characteristics of the novel goose parvovirus SD15 strain in vitro. BMC Veterinary Research, 2019, 15, 63.	1.9	5
116	Expression and purification of the truncated duck DTMUV NS5 protein and the subcellular localization of NS5 in vitro. Poultry Science, 2019, 98, 2989-2996.	3.4	6
117	Terminase Large Subunit Provides a New Drug Target for Herpesvirus Treatment. Viruses, 2019, 11, 219.	3.3	15
118	Development and evaluation of an indirect ELISA based on recombinant nonstructural protein 3A to detect antibodies to duck hepatitis A virus type 1. Journal of Virological Methods, 2019, 268, 56-61.	2.1	6
119	Duck Plague Virus Promotes DEF Cell Apoptosis by Activating Caspases, Increasing Intracellular ROS Levels and Inducing Cell Cycle S-Phase Arrest. Viruses, 2019, 11, 196.	3.3	13
120	The 164 K, 165 K, and 167 K residues of VP1 are vital for goose parvovirus proliferation in GEFs bas PCR-based reverse genetics system. Virology Journal, 2019, 16, 136.	ed on 3.4	1
121	The VP3 protein of duck hepatitis A virus mediates host cell adsorption and apoptosis. Scientific Reports, 2019, 9, 16783.	3.3	15
122	Heparin sulfate is the attachment factor of duck Tembus virus on both BHK21 and DEF cells. Virology Journal, 2019, 16, 134.	3.4	8
123	Downregulation of microRNA-30a-5p contributes to the replication of duck enteritis virus by regulating Beclin-1-mediated autophagy. Virology Journal, 2019, 16, 144.	3.4	14
124	Prevalence of fluoroquinolone resistance and mutations in the gyrA, parC and parE genes of Riemerella anatipestifer isolated from ducks in China. BMC Microbiology, 2019, 19, 271.	3.3	7
125	CpG oligodeoxynucleotide-specific duck TLR21 mediates activation of NF-κB signaling pathway and plays an important role in the host defence of DPV infection. Molecular Immunology, 2019, 106, 87-98.	2.2	8
126	Duck plague virus Glycoprotein J is functional but slightly impaired in viral replication and cell-to-cell spread. Scientific Reports, 2018, 8, 4069.	3.3	19

#	Article	IF	CITATIONS
127	ATPase activity of GroEL is dependent on GroES and it is response for environmental stress in Riemerella anatipestifer. Microbial Pathogenesis, 2018, 121, 51-58.	2.9	8
128	The 164 K, 165 K and 167 K residues in 160YPVVKKPKLTEE171 are required for the nuclear import of goos parvovirus VP1. Virology, 2018, 519, 17-22.	⁵⁰ 2.4	10
129	Molecular identification of goose (Anser cygnoide) suppressor ubiquitin-specific protease 18 (USP18) and the effects of goose IFN and TMUV on its comparative transcripts. Poultry Science, 2018, 97, 1022-1031.	3.4	0
130	Duck stimulator of interferon genes plays an important role in host anti-duck plague virus infection through an IFN-dependent signalling pathway. Cytokine, 2018, 102, 191-199.	3.2	25
131	Molecular epidemiology of duck hepatitis a virus types 1 and 3 in China, 2010-2015. Transboundary and Emerging Diseases, 2018, 65, 10-15.	3.0	62
132	Programmed cell death: the battlefield between the host and alpha-herpesviruses and a potential avenue for cancer treatment. Oncotarget, 2018, 9, 30704-30719.	1.8	10
133	US10 Protein Is Crucial but not Indispensable for Duck Enteritis Virus Infection in Vitro. Scientific Reports, 2018, 8, 16510.	3.3	10
134	DHAV-1 2A1 Peptide – A Newly Discovered Co-expression Tool That Mediates the Ribosomal "Skipping― Function. Frontiers in Microbiology, 2018, 9, 2727.	3.5	12
135	Induction of a protective response in ducks vaccinated with a DNA vaccine encoding engineered duck circovirus Capsid protein. Veterinary Microbiology, 2018, 225, 40-47.	1.9	7
136	Co-localization of and interaction between duck enteritis virus glycoprotein H and L. BMC Veterinary Research, 2018, 14, 255.	1.9	6
137	Transcriptomic Characterization of a Chicken Embryo Model Infected With Duck Hepatitis A Virus Type 1. Frontiers in Immunology, 2018, 9, 1845.	4.8	20
138	Analysis of the microRNA expression profiles in DEF cells infected with duck Tembusu virus. Infection, Genetics and Evolution, 2018, 63, 126-134.	2.3	14
139	Multiple genetic tools for editing the genome of Riemerella anatipestifer using a counterselectable marker. Applied Microbiology and Biotechnology, 2018, 102, 7475-7488.	3.6	17
140	Conserved Active-Site Residues Associated with OAS Enzyme Activity and Ubiquitin-Like Domains Are Not Required for the Antiviral Activity of goOASL Protein against Avian Tembusu Virus. Viruses, 2018, 10, 371.	3.3	6
141	Cas1 and Cas2 From the Type II-C CRISPR-Cas System of Riemerella anatipestifer Are Required for Spacer Acquisition. Frontiers in Cellular and Infection Microbiology, 2018, 8, 195.	3.9	15
142	The 125th Lys and 145th Thr Amino Acids in the GTPase Domain of Goose Mx Confer Its Antiviral Activity against the Tembusu Virus. Viruses, 2018, 10, 361.	3.3	1
143	Roles of B739_1343 in iron acquisition and pathogenesis in Riemerella anatipestifer CH-1 and evaluation of the RA-CH-11"B739_1343 mutant as an attenuated vaccine. PLoS ONE, 2018, 13, e0197310.	2.5	22
144	Establishment of a reverse genetics system for duck Tembusu virus to study virulence and screen antiviral genes. Antiviral Research, 2018, 157, 120-127.	4.1	34

#	Article	IF	CITATIONS
145	Regulated delayed attenuation enhances the immunogenicity and protection provided by recombinant Salmonellaenterica serovar Typhimurium vaccines expressing serovar Choleraesuis O-polysaccharides. Vaccine, 2018, 36, 5010-5019.	3.8	6
146	Molecular characterization of duck enteritis virus UL41 protein. Virology Journal, 2018, 15, 12.	3.4	18
147	Cytokine storms are primarily responsible for the rapid death of ducklings infected with duck hepatitis A virus type 1. Scientific Reports, 2018, 8, 6596.	3.3	32
148	Oral Vaccination with a DNA Vaccine Encoding Capsid Protein of Duck Tembusu Virus Induces Protection Immunity. Viruses, 2018, 10, 180.	3.3	24
149	Incompatible Translation Drives a Convergent Evolution and Viral Attenuation During the Development of Live Attenuated Vaccine. Frontiers in Cellular and Infection Microbiology, 2018, 8, 249.	3.9	13
150	Suppression of NF-κB Activity: A Viral Immune Evasion Mechanism. Viruses, 2018, 10, 409.	3.3	66
151	Use of Natural Transformation To Establish an Easy Knockout Method in Riemerella anatipestifer. Applied and Environmental Microbiology, 2017, 83, .	3.1	54
152	The suppression of apoptosis by $\hat{l}\pm$ -herpesvirus. Cell Death and Disease, 2017, 8, e2749-e2749.	6.3	68
153	Identification of Type III Interferon (IFN-λ) in Chinese Goose: Gene Structure, Age-Dependent Expression Profile, and Antiviral Immune Characteristics <i>In Vivo</i> and <i>In Vitro</i> . Journal of Interferon and Cytokine Research, 2017, 37, 269-277.	1.2	4
154	Preliminary study of the UL55 gene based on infectious Chinese virulent duck enteritis virus bacterial artificial chromosome clone. Virology Journal, 2017, 14, 78.	3.4	22
155	Molecular identification and immunological characteristics of goose suppressor of cytokine signaling 1 (SOCS-1) in vitro and vivo following DTMUV challenge. Cytokine, 2017, 93, 1-9.	3.2	3
156	Identification of a wza -like gene involved in capsule biosynthesis, pathogenicity and biofilm formation in Riemerella anatipestifer. Microbial Pathogenesis, 2017, 107, 442-450.	2.9	26
157	Prokaryotic expression of a codon-optimized capsid gene from duck circovirus and its application to an indirect ELISA. Journal of Virological Methods, 2017, 247, 1-5.	2.1	14
158	The 3D protein of duck hepatitis A virus type 1 binds to a viral genomic 3′ UTR and shows RNA-dependent RNA polymerase activity. Virus Genes, 2017, 53, 831-839.	1.6	21
159	The duck enteritis virus early protein, UL13, found in both nucleus and cytoplasm, influences viral replication in cell culture. Poultry Science, 2017, 96, 2899-2907.	3.4	18
160	Identification of the ferric iron utilization gene B739_1208 and its role in the virulence of R. anatipestifer CH-1. Veterinary Microbiology, 2017, 201, 162-169.	1.9	30
161	Development of an immunochromatographic strip for detection of antibodies against duck Tembusu virus. Journal of Virological Methods, 2017, 249, 137-142.	2.1	21
162	Differential immune-related gene expression in the spleens of duck Tembusu virus-infected goslings. Veterinary Microbiology, 2017, 212, 39-47.	1.9	32

#	Article	IF	CITATIONS
163	Regulation of viral gene expression by duck enteritis virus UL54. Scientific Reports, 2017, 7, 1076.	3.3	11
164	Recombinant attenuated Salmonella Typhimurium with heterologous expression of the Salmonella Choleraesuis O-polysaccharide: high immunogenicity and protection. Scientific Reports, 2017, 7, 7127.	3.3	6
165	Cleavage of poly(A)-binding protein by duck hepatitis A virus 3C protease. Scientific Reports, 2017, 7, 16261.	3.3	39
166	GoTLR7 but not GoTLR21 mediated antiviral immune responses against low pathogenic H9N2 AIV and Newcastle disease virus infection. Immunology Letters, 2017, 181, 6-15.	2.5	8
167	Two Novel Salmonella Bivalent Vaccines Confer Dual Protection against Two Salmonella Serovars in Mice. Frontiers in Cellular and Infection Microbiology, 2017, 7, 391.	3.9	15
168	Goose Mx and OASL Play Vital Roles in the Antiviral Effects of Type I, II, and III Interferon against Newly Emerging Avian Flavivirus. Frontiers in Immunology, 2017, 8, 1006.	4.8	26
169	Virologic and Immunologic Characteristics in Mature Ducks with Acute Duck Hepatitis A Virus 1 Infection. Frontiers in Immunology, 2017, 8, 1574.	4.8	23
170	Structures and Corresponding Functions of Five Types of Picornaviral 2A Proteins. Frontiers in Microbiology, 2017, 8, 1373.	3.5	45
171	Identification of IFITM1 and IFITM3 in Goose: Gene Structure, Expression Patterns, and Immune Reponses against Tembusu Virus Infection. BioMed Research International, 2017, 2017, 1-13.	1.9	10
172	Identifying the Genes Responsible for Iron-Limited Condition in <i> Riemerella anatipestifer</i> CH-1 through RNA-Seq-Based Analysis. BioMed Research International, 2017, 2017, 1-10.	1.9	22
173	Comparative analysis of virus-host interactions caused by a virulent and an attenuated duck hepatitis A virus genotype 1. PLoS ONE, 2017, 12, e0178993.	2.5	35
174	RNA-seq comparative analysis of Peking ducks spleen gene expressionÂ24Âh post-infected with duck plague virulent or attenuated virus. Veterinary Research, 2017, 48, 47.	3.0	18
175	Molecular characterization of the duck enteritis virus US10 protein. Virology Journal, 2017, 14, 183.	3.4	14
176	The neglected avian hepatotropic virus induces acute and chronic hepatitis in ducks: an alternative model for hepatology. Oncotarget, 2017, 8, 81838-81851.	1.8	25
177	Viral-host interaction in kidney reveals strategies to escape host immunity and persistently shed virus to the urine. Oncotarget, 2017, 8, 7336-7349.	1.8	28
178	Cross-species antiviral activity of goose interferon lambda against duck plague virus is related to its positive self-regulatory feedback loop. Journal of General Virology, 2017, 98, 1455-1466.	2.9	5
179	Immune-Related Gene Expression Patterns in GPV- or H9N2-Infected Goose Spleens. International Journal of Molecular Sciences, 2016, 17, 1990.	4.1	11
180	TRIM25 Identification in the Chinese Goose: Gene Structure, Tissue Expression Profiles, and Antiviral Immune Responses In Vivo and In Vitro. BioMed Research International, 2016, 2016, 1-14.	1.9	10

Dekang Zhu

#	Article	IF	CITATIONS
181	Cross-Species Antiviral Activity of Goose Interferons against Duck Plague Virus Is Related to Its Positive Self-Feedback Regulation and Subsequent Interferon Stimulated Genes Induction. Viruses, 2016, 8, 195.	3.3	15
182	LPAIV H9N2 Drives the Differential Expression of Goose Interferons and Proinflammatory Cytokines in Both In Vitro and In Vivo Studies. Frontiers in Microbiology, 2016, 7, 166.	3.5	7
183	Genome-Wide Analysis of the Synonymous Codon Usage Patterns in Riemerella anatipestifer. International Journal of Molecular Sciences, 2016, 17, 1304.	4.1	26
184	Complete genome sequence of the novel duck hepatitis B virus strain SCP01 from Sichuan Cherry Valley duck. SpringerPlus, 2016, 5, 1353.	1.2	6
185	Investigation of TbfA in Riemerella anatipestifer using plasmid-based methods for gene over-expression and knockdown. Scientific Reports, 2016, 6, 37159.	3.3	51
186	Antigen distribution of TMUV and GPV are coincident with the expression profiles of CD8α-positive cells and goose IFNγ. Scientific Reports, 2016, 6, 25545.	3.3	17
187	Characterization of nucleocytoplasmic shuttling and intracellular localization signals in Duck Enteritis Virus UL54. Biochimie, 2016, 127, 86-94.	2.6	13
188	Development and evaluation of indirect ELISAs for the detection of IgG, IgM and IgA1 against duck hepatitis A virus 1. Journal of Virological Methods, 2016, 237, 79-85.	2.1	26
189	A one-step duplex rRT-PCR assay for the simultaneous detection of duck hepatitis A virus genotypes 1 and 3. Journal of Virological Methods, 2016, 236, 207-214.	2.1	31
190	Identification of <i>2′-5′-Oligoadenylate Synthetase-Like</i> Gene in Goose: Gene Structure, Expression Patterns, and Antiviral Activity Against Newcastle Disease Virus. Journal of Interferon and Cytokine Research, 2016, 36, 563-572.	1.2	25
191	The 2A2 protein of Duck hepatitis A virus type 1 induces apoptosis in primary cell culture. Virus Genes, 2016, 52, 780-788.	1.6	35
192	Complete Genome Sequence of Mycobacterium avium, Isolated from Commercial Domestic Pekin Ducks (Anas platyrhynchos <i>domestica</i>), Determined Using PacBio Single-Molecule Real-Time Technology. Genome Announcements, 2016, 4, .	0.8	2
193	Genome Sequence of Riemerella anatipestifer Strain RCAD0122, a Multidrug-Resistant Isolate from Ducks. Genome Announcements, 2016, 4, .	0.8	23
194	CpG oligodeoxynucleotide-specific goose TLR21 initiates an anti-viral immune response against NGVEV but not AIV strain H9N2 infection. Immunobiology, 2016, 221, 454-461.	1.9	11
195	Molecular identification and comparative transcriptional analysis of myxovirus resistance GTPase (Mx) gene in goose (Anser cygnoide) after H9N2 AIV infection. Comparative Immunology, Microbiology and Infectious Diseases, 2016, 47, 32-40.	1.6	15
196	Development of a Cell Marker ELISA for the Detection of Goose T Cell Surface CD8α Molecules. Applied Biochemistry and Biotechnology, 2016, 179, 531-544.	2.9	2
197	The Detection of Hemin-Binding Proteins in Riemerella anatipestifer CH-1. Current Microbiology, 2016, 72, 152-158.	2.2	11
198	Rescue of a duck circovirus from an infectious DNA clone in ducklings. Virology Journal, 2015, 12, 82.	3.4	13

Dekang Zhu

#	Article	IF	CITATIONS
199	Duck enteritis virus UL54 is an IE protein primarily located in the nucleus. Virology Journal, 2015, 12, 198.	3.4	24
200	Transcriptome Analysis and Identification of Differentially Expressed Transcripts of Immune-Related Genes in Spleen of Gosling and Adult Goose. International Journal of Molecular Sciences, 2015, 16, 22904-22926.	4.1	19
201	TonB Energy Transduction Systems of Riemerella anatipestifer Are Required for Iron and Hemin Utilization. PLoS ONE, 2015, 10, e0127506.	2.5	35
202	Identification, Characterization, and Developmental Expression Pattern of Type III Interferon Receptor Gene in the Chinese Goose. BioMed Research International, 2015, 2015, 1-11.	1.9	4
203	Identification of Type II Interferon Receptors in Geese: Gene Structure, Phylogenetic Analysis, and Expression Patterns. BioMed Research International, 2015, 2015, 1-14.	1.9	1
204	Identification of ribosomal RNA methyltransferase gene <i>erm</i> F in <i>Riemerella anatipestifer</i> . Avian Pathology, 2015, 44, 162-168.	2.0	48
205	Analysis of synonymous codon usage pattern in duck circovirus. Gene, 2015, 557, 138-145.	2.2	12
206	Molecular cloning, tissue distribution, and immune function of goose TLR7. Immunology Letters, 2015, 163, 135-142.	2.5	13
207	Age-related development and tissue distribution of T cell markers (CD4 and CD8a) in Chinese goose. Immunobiology, 2015, 220, 753-761.	1.9	7
208	Immunobiological activity and antiviral regulation efforts of Chinese goose (Anser cygnoides) CD8α during NGVEV and GPV infection. Poultry Science, 2015, 94, 17-24.	3.4	11
209	Type I interferon receptors in goose: Molecular cloning, structural identification, evolutionary analysis and age-related tissue expression profile. Gene, 2015, 561, 35-44.	2.2	6
210	Development and evaluation of live attenuated Salmonella vaccines in newly hatched duckings. Vaccine, 2015, 33, 5564-5571.	3.8	10
211	Development and validation of a SYBR Green real-time PCR assay for rapid and quantitative detection of goose interferons and proinflammatory cytokines. Poultry Science, 2015, 94, 2382-2387.	3.4	7
212	Development of an indirect ELISA method based on the VP3 protein of duck hepatitis A virus type 1 (DHAV-1) for dual detection of DHAV-1 and DHAV-3 antibodies. Journal of Virological Methods, 2015, 225, 30-34.	2.1	34
213	Recent advances from studies on the role of structural proteins in enterovirus infection. Future Microbiology, 2015, 10, 1529-1542.	2.0	25
214	Identification and molecular characterization of a novel duck Tembusu virus isolate from Southwest China. Archives of Virology, 2015, 160, 2781-2790.	2.1	55
215	The pregenome/C RNA of duck hepatitis B virus is not used for translation of core protein during the early phase of infection in vitro. Virus Research, 2015, 196, 13-19.	2.2	1
216	Molecular characterization of duck enteritis virus CHv strain UL49.5 protein and its colocalization with glycoprotein M. Journal of Veterinary Science, 2014, 15, 389.	1.3	7

#	Article	IF	CITATIONS
217	An Attenuated Duck Plague Virus (DPV) Vaccine Induces both Systemic and Mucosal Immune Responses To Protect Ducks against Virulent DPV Infection. Vaccine Journal, 2014, 21, 457-462.	3.1	22
218	Cloning, expression and purification of duck hepatitis B virus (DHBV) core protein and its use in the development of an indirect ELISA for serologic detection of DHBV infection. Archives of Virology, 2014, 159, 897-904.	2.1	12
219	Comparative genomics of Riemerella anatipestifer reveals genetic diversity. BMC Genomics, 2014, 15, 479.	2.8	60
220	Construction and identification of a cDNA library for use in the yeast two-hybrid system from duck embryonic fibroblast cells post-infected with duck enteritis virus. Molecular Biology Reports, 2014, 41, 467-475.	2.3	10
221	Distribution characteristics of DNA vaccine encoded with glycoprotein C from Anatid herpesvirus 1 with chitosan and liposome as deliver carrier in ducks. Virology Journal, 2013, 10, 89.	3.4	16
222	The transcription analysis of duck enteritis virus UL49.5 gene using real-time quantitative reverse transcription PCR. Virus Genes, 2013, 47, 298-304.	1.6	13
223	Identification, genotyping, and molecular evolution analysis of duck circovirus. Gene, 2013, 529, 288-295.	2.2	36
224	Recombinant UL16 antigen-based indirect ELISA for serodiagnosis of duck viral enteritis. Journal of Virological Methods, 2013, 189, 105-109.	2.1	2
225	Chinese goose (Anser cygnoides) CD8a: Cloning, tissue distribution and immunobiological in splenic mononuclear cells. Gene, 2013, 529, 332-339.	2.2	8
226	Molecular cloning, characterization and tissue expression of CD4 in Chinese goose. Gene, 2013, 519, 298-304.	2.2	9
227	Complete Genome Sequence of the Novel Duck Circovirus Strain GH01 from Southwestern China. Genome Announcements, 2013, 1, .	0.8	5
228	Complete Genomic Sequence of Chinese Virulent Duck Enteritis Virus. Journal of Virology, 2012, 86, 5965-5965.	3.4	86
229	Comparative Genomic Analysis of Duck Enteritis Virus Strains. Journal of Virology, 2012, 86, 13841-13842.	3.4	50
230	Complete Genome Sequence of Riemerella anatipestifer Reference Strain. Journal of Bacteriology, 2012, 194, 3270-3271.	2.2	58
231	Sequence analysis of the OmpA/MotB gene from Riemerella anatipestifer by bioinformatics. , 2012, , .		0
232	Analysis of synonymous codon usage in the mfs_1 gene of Riemerella anatipestifer. , 2012, , .		0
233	Attenuated Salmonella typhimurium delivering DNA vaccine encoding duck enteritis virus UL24 induced systemic and mucosal immune responses and conferred good protection against challenge. Veterinary Research, 2012, 43, 56.	3.0	21
234	Replication kinetics of duck enteritis virus UL16 gene in vitro. Virology Journal, 2012, 9, 281.	3.4	12

#	Article	IF	CITATIONS
235	Induction of immune responses in ducks with a DNA vaccine encoding duck plague virus glycoprotein C. Virology Journal, 2011, 8, 214.	3.4	25
236	Establishment of real-time quantitative reverse transcription polymerase chain reaction assay for transcriptional analysis of duck enteritis virus UL55 gene. Virology Journal, 2011, 8, 266.	3.4	20
237	Serologic Detection of Duck Enteritis Virus Using an Indirect ELISA Based on Recombinant UL55 Protein. Avian Diseases, 2011, 55, 626-632.	1.0	21
238	Intestinal mucosal immune response in ducklings following oral immunisation with an attenuated Duck enteritis virus vaccine. Veterinary Journal, 2010, 185, 199-203.	1.7	23
239	Molecular cloning and sequence analysis of the duck enteritis virus Us4 gene. , 2010, , .		1
240	Identification and characterization of duck plague virus glycoprotein C gene and gene product. Virology Journal, 2010, 7, 349.	3.4	26
241	Development and evaluation of an antigen-capture ELISA for detection of the UL24 antigen of the duck enteritis virus, based on a polyclonal antibody against the UL24 expression protein. Journal of Virological Methods, 2009, 161, 38-43.	2.1	36
242	Intestinal mucosal immune response against virulent duck enteritis virus infection in ducklings. Research in Veterinary Science, 2009, 87, 218-225.	1.9	18
243	Immunohistochemical detection and localization of new type gosling viral enteritis virus in paraformaldehyde-fixed paraffin-embedded tissue. Veterinary Immunology and Immunopathology, 2009, 130, 226-235.	1.2	25
244	Quantitative Analysis of Virulent Duck Enteritis Virus Loads in Experimentally Infected Ducklings. Avian Diseases, 2008, 52, 338-344.	1.0	30
245	Correlation between the lung distribution patterns of Lu-Ecam-1 and melanoma experimental metastases. International Journal of Cancer, 1993, 53, 628-633.	5.1	20
246	Duck Plague Virus Negatively Regulates IFN Signaling to Promote Virus Proliferation via JNK Signaling Pathway. Frontiers in Immunology, 0, 13, .	4.8	1