Jen Wood

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5895587/publications.pdf

Version: 2024-02-01

567281 501196 33 929 15 28 h-index citations g-index papers 35 35 35 1225 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Biochar reduced extractable dieldrin concentrations and promoted oligotrophic growth including microbial degraders of chlorinated pollutants. Journal of Hazardous Materials, 2022, 423, 127156.	12.4	5
2	Elevated atmospheric CO2 alters the microbial community composition and metabolic potential to mineralize organic phosphorus in the rhizosphere of wheat. Microbiome, 2022, 10, 12.	11.1	24
3	The role of decomposer communities in managing surface fuels: a neglected ecosystem service. International Journal of Wildland Fire, 2022, 31, 350-368.	2.4	6
4	From laboratory tests to field trials: a review of cathodic protection and microbially influenced corrosion. Biofouling, 2022, 38, 298-320.	2.2	15
5	Highly decomposed organic carbon mediates the assembly of soil communities with traits for the biodegradation of chlorinated pollutants. Journal of Hazardous Materials, 2021, 404, 124077.	12.4	11
6	Metabolic flexibility allows bacterial habitat generalists to become dominant in a frequently disturbed ecosystem. ISME Journal, 2021, 15, 2986-3004.	9.8	89
7	Rewilding with invertebrates and microbes to restore ecosystems: Present trends and future directions. Ecology and Evolution, 2021, 11, 7187-7200.	1.9	27
8	High Taxonomic Diversity in Ship Bilges Presents Challenges for Monitoring Microbial Corrosion and Opportunity To Utilize Community Functional Profiling. Applied and Environmental Microbiology, 2021, 87, e0089021.	3.1	1
9	Town-scale microbial sewer community and H2S emissions response to common chemical and biological dosing treatments. Journal of Environmental Sciences, 2020, 87, 133-148.	6.1	8
10	Exercise improves metabolic function and alters the microbiome in rats with gestational diabetes. FASEB Journal, 2020, 34, 1728-1744.	0.5	19
11	Microbial communities associated with distance- and density-dependent seedling mortality in a tropical rainforest. Plant Ecology, 2020, 221, 41-54.	1.6	5
12	A pioneer calf foetus microbiome. Scientific Reports, 2020, 10, 17712.	3.3	34
13	Long-term CO2 enrichment alters the diversity and function of the microbial community in soils with high organic carbon. Soil Biology and Biochemistry, 2020, 144, 107780.	8.8	33
14	Microbial communities in top- and subsoil of repacked soil columns respond differently to amendments but their diversity is negatively correlated with plant productivity. Scientific Reports, 2019, 9, 8890.	3.3	27
15	An efficient, cost-effective method for determining the growth rate of sulfate-reducing bacteria using spectrophotometry. MethodsX, 2019, 6, 2248-2257.	1.6	18
16	Gastrointestinal dysfunction in patients and mice expressing the autismâ€associated R451C mutation in neuroliginâ€3. Autism Research, 2019, 12, 1043-1056.	3.8	63
17	Delving into the dark ecology: A continent-wide assessment of patterns of composition in soil fungal communities from Australian tussock grasslands. Fungal Ecology, 2019, 39, 356-370.	1.6	8
18	Competitive Traits Are More Important than Stress-Tolerance Traits in a Cadmium-Contaminated Rhizosphere: A Role for Trait Theory in Microbial Ecology. Frontiers in Microbiology, 2018, 9, 121.	3.5	60

#	Article	IF	Citations
19	Understanding microbiomes through trait-based ecology. Microbiology Australia, 2018, 39, 53.	0.4	4
20	Linking microscopic interactions with macroscopic effects. Journal of Vegetation Science, 2017, 28, 462-463.	2.2	3
21	Draft Genome Sequence of Leifsonia sp. Strain NCR5, a Rhizobacterium Isolated from Cadmium-Contaminated Soil. Genome Announcements, 2017, 5, .	0.8	4
22	Draft Genome Sequence of Rhodococcus erythropolis NSX2, an Actinobacterium Isolated from a Cadmium-Contaminated Environment. Genome Announcements, 2016, 4, .	0.8	1
23	Draft Genome Sequence of Enterobacter ludwigii NCR3, a Heavy Metal–Resistant Rhizobacterium. Genome Announcements, 2016, 4, .	0.8	5
24	Long-term effects of elevated CO2 on carbon and nitrogen functional capacity of microbial communities in three contrasting soils. Soil Biology and Biochemistry, 2016, 97, 157-167.	8.8	65
25	Microbial associated plant growth and heavy metal accumulation toÂimprove phytoextraction of contaminated soils. Soil Biology and Biochemistry, 2016, 103, 131-137.	8.8	94
26	Microbial community dynamics in the rhizosphere of a cadmium hyper-accumulator. Scientific Reports, 2016, 6, 36067.	3.3	52
27	Draft Genome Sequence of Bacillus cereus LCR12, a Plant Growth–Promoting Rhizobacterium Isolated from a Heavy Metal–Contaminated Environment. Genome Announcements, 2016, 4, .	0.8	8
28	Characteristics of metal-tolerant plant growth-promoting yeast (Cryptococcus sp. NSE1) and its influence on Cd hyperaccumulator Sedum plumbizincicola. Environmental Science and Pollution Research, 2016, 23, 18621-18629.	5.3	13
29	Microorganisms in heavy metal bioremediation: strategies for applying microbial-community engineering to remediate soils. AIMS Bioengineering, 2016, 3, 211-229.	1.1	38
30	Innovative biological approaches for monitoring and improving water quality. Frontiers in Microbiology, 2015, 6, 826.	3.5	29
31	Agp2p, the Plasma Membrane Transregulator of Polyamine Uptake, Regulates the Antifungal Activities of the Plant Defensin NaD1 and Other Cationic Peptides. Antimicrobial Agents and Chemotherapy, 2014, 58, 2688-2698.	3.2	38
32	Identification and Mechanism of Action of the Plant Defensin NaD1 as a New Member of the Antifungal Drug Arsenal against Candida albicans. Antimicrobial Agents and Chemotherapy, 2013, 57, 3667-3675.	3.2	104
33	Comparing the Gut Microbiome in Autism and Preclinical Models: A Systematic Review. Frontiers in Cellular and Infection Microbiology, 0, 12 , .	3.9	16