
Luciani R Carvalho

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5895412/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Molecular mechanisms of pituitary organogenesis: In search of novel regulatory genes. Molecular and Cellular Endocrinology, 2010, 323, 4-19.	1.6	140
2	Growth Hormone (GH) Pharmacogenetics: Influence of GH Receptor Exon 3 Retention or Deletion on First-Year Growth Response and Final Height in Patients with Severe GH Deficiency. Journal of Clinical Endocrinology and Metabolism, 2006, 91, 1076-1080.	1.8	136
3	A homozygous mutation in HESX1 is associated with evolving hypopituitarism due to impaired repressor-corepressor interaction. Journal of Clinical Investigation, 2003, 112, 1192-1201.	3.9	110
4	Novel Heterozygous Nonsense GLI2 Mutations in Patients with Hypopituitarism and Ectopic Posterior Pituitary Lobe without Holoprosencephaly. Journal of Clinical Endocrinology and Metabolism, 2010, 95, E384-E391.	1.8	91
5	Role of GLI2 in hypopituitarism phenotype. Journal of Molecular Endocrinology, 2015, 54, R141-R150.	1.1	50
6	Combined pituitary hormone deficiency (CPHD) due to a complete PROP1 deletion. Clinical Endocrinology, 2006, 65, 294-300.	1.2	35
7	FGFR1 and PROKR2 rare variants found in patients with combined pituitary hormone deficiencies. Endocrine Connections, 2015, 4, 100-107.	0.8	34
8	Relatively high frequency of nonâ€synonymous <i><scp>GLI</scp>2</i> variants in patients with congenital hypopituitarism without holoprosencephaly. Clinical Endocrinology, 2013, 78, 551-557.	1.2	33
9	Hormonal, pituitary magnetic resonance, LHX4 and HESX1 evaluation in patients with hypopituitarism and ectopic posterior pituitary lobe. Clinical Endocrinology, 2006, 66, 061107003613003-???.	1.2	32
10	Frequent development of combined pituitary hormone deficiency in patients initially diagnosed as isolated growth hormone deficiency: a long term follow-up of patients from a single center. Pituitary, 2015, 18, 561-567.	1.6	30
11	Genetic Evidence of the Association of DEAH-Box Helicase 37 Defects With 46,XY Gonadal Dysgenesis Spectrum. Journal of Clinical Endocrinology and Metabolism, 2019, 104, 5923-5934.	1.8	26
12	<i><scp>HESX</scp>1</i> mutations in patients with congenital hypopituitarism: variable phenotypes with the same genotype. Clinical Endocrinology, 2016, 85, 408-414.	1.2	24
13	Corepressors TLE1 and TLE3 Interact with HESX1 and PROP1. Molecular Endocrinology, 2010, 24, 754-765.	3.7	23
14	Combined pituitary hormone deficiency caused by PROP1 mutations: update 20 years post-discovery. Archives of Endocrinology and Metabolism, 2019, 63, 167-174.	0.3	23
15	Differential Expression of Stem Cell Markers in Human Adamantinomatous Craniopharyngioma and Pituitary Adenoma. Neuroendocrinology, 2017, 104, 183-193.	1.2	19
16	Acromegalic features in growth hormore (GH)-deficient patients after long-term GH therapy. Clinical Endocrinology, 2003, 59, 788-792.	1.2	18
17	Absence of GH-Releasing Hormone (GHRH) Mutations in Selected Patients with Isolated GH Deficiency. Journal of Clinical Endocrinology and Metabolism, 2011, 96, E1457-E1460.	1.8	17
18	Comparison between weight-based and IGF-I-based growth hormone (GH) dosing in the treatment of children with GH deficiency and influence of exon 3 deleted GH receptor variant. Growth Hormone and IGF Research, 2009, 19, 179-186.	0.5	16

LUCIANI R CARVALHO

#	Article	IF	CITATIONS
19	A recurrent synonymous mutation in the human androgen receptor gene causing complete androgen insensitivity syndrome. Journal of Steroid Biochemistry and Molecular Biology, 2017, 174, 14-16.	1.2	16
20	Successful Pregnancies After Adequate Hormonal Replacement in Patients With Combined Pituitary Hormone Deficiencies. Journal of the Endocrine Society, 2017, 1, 1322-1330.	0.1	14
21	Molecular analysis of brazilian patients with combined pituitary hormone deficiency and orthotopic posterior pituitary lobe reveals eight different <i><scp>PROP</scp>1</i> alterations with three novel mutations. Clinical Endocrinology, 2017, 87, 725-732.	1.2	13
22	PROP1 and CTNNB1 expression in adamantinomatous craniopharyngiomas with or without \hat{l}^2 -catenin mutations. Clinics, 2011, 66, 1849-54.	0.6	13
23	Analysis of Craniofacial and Extremity Growth in Patients with Growth Hormone Deficiency during Growth Hormone Therapy. Hormone Research, 2009, 71, 173-177.	1.8	12
24	Apoptosis: its role in pituitary development and neoplastic pituitary tissue. Pituitary, 2014, 17, 157-162.	1.6	12
25	Pathogenic copy number variants in patients with congenital hypopituitarism associated with complex phenotypes. Clinical Endocrinology, 2018, 88, 425-431.	1.2	11
26	Mobile DNA in Endocrinology: LINE-1 Retrotransposon Causing Partial Androgen Insensitivity Syndrome. Journal of Clinical Endocrinology and Metabolism, 2019, 104, 6385-6390.	1.8	10
27	Tall stature and poor breast development after estrogen replacement in a hypergonadotrophic hypogonadic patient with a 45,X/46,X,der(X) karyotype with SHOX gene overdosage. Arquivos Brasileiros De Endocrinologia E Metabologia, 2008, 52, 1282-1287.	1.3	9
28	PROP1 overexpression in corticotrophinomas: evidence for the role of PROP1 in the maintenance of cells committed to corticotrophic differentiation. Clinics, 2013, 68, 887-891.	0.6	9
29	Expression profiles of the glucose-dependent insulinotropic peptide receptor and LHCGR in sporadic adrenocortical tumors. Journal of Endocrinology, 2009, 200, 167-175.	1.2	5
30	Autosomal recessive form of isolated growth hormone deficiency is more frequent than the autosomal dominant form in a Brazilian cohort. Growth Hormone and IGF Research, 2014, 24, 180-186.	0.5	5
31	Ketoconazole Treatment Decreases the Viability of Immortalized Pituitary Cell Lines Associated with an Increased Expression of Apoptosisâ€Related Genes and Cell Cycle Inhibitors. Journal of Neuroendocrinology, 2015, 27, 616-623.	1.2	5
32	A homozygous point mutation in the GH1 promoter (c223C>T) leads to reduced GH1 expression in siblings with isolated GH deficiency (IGHD). European Journal of Endocrinology, 2016, 175, K7-K15.	1.9	5
33	Growth hormone deficiency with advanced bone age: phenotypic interaction between GHRH receptor and CYP21A2 mutations diagnosed by sanger and whole exome sequencing. Archives of Endocrinology and Metabolism, 2017, 61, 633-636.	0.3	4
34	An Easy Method for Cryopreservation of Zebrafish (<i>Danio rerio</i>) Sperm. Zebrafish, 2019, 16, 321-323.	0.5	3
35	Rederivation of a mutant line (prop 1) of zebrafish Danio rerio infected with Pseudoloma neurophilia using in vitro fertilization with eggs from pathogenâ€free wildâ€ŧype (AB) females and sperm from prop 1 males. Journal of Fish Diseases, 2022, 45, 35-39.	0.9	3
36	Cushing disease due to a somatic USP8 mutation in a patient with evolving pituitary hormone deficiencies due to a germline GH1 splicing variant. Archives of Endocrinology and Metabolism, 2022, ,	0.3	2

3

LUCIANI R CARVALHO

#	Article	IF	CITATIONS
37	Central adrenal insufficiency: who, when, and how? From the evidence to the controversies – an exploratory review. Archives of Endocrinology and Metabolism, 2022, , .	0.3	2
38	Craniofacial features with growth hormone treatment. Journal of Pediatrics, 2005, 146, 295.	0.9	1
39	Metabolomics as a potential tool for the diagnosis of growth hormone deficiency (GHD): a review. Archives of Endocrinology and Metabolism, 2020, 64, 654-663.	0.3	1
40	Allelic Variants in Established Hypopituitarism Genes Expand Our Knowledge of the Phenotypic Spectrum. Genes, 2021, 12, 1128.	1.0	0
41	OR06-6 Whole-Exome Sequencing of Patients with Pituitary Stalk Interruption Syndrome (PSIS) Reveals Probably Pathogenic Variants in Novel Candidate Genes Journal of the Endocrine Society, 2019, 3, .	0.1	0
42	Novel OTX2 loss of function variant associated with congenital hypopituitarism without eye abnormalities. Journal of Pediatric Endocrinology and Metabolism, 2022, .	0.4	0