List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5895246/publications.pdf Version: 2024-02-01

	30551	24511
13,533	56	114
citations	h-index	g-index
151	151	17266
docs citations	times ranked	citing authors
	13,533 citations 151 docs citations	13,53356citationsh-index151151docs citations151times ranked

#	Article	IF	CITATIONS
1	Influence of 8-week daily consumption of a new product combining green coffee hydroxycinnamates and beta-glucans on polyphenol bioavailability in subjects with overweight and obesity. Food and Function, 2022, 13, 1133-1152.	2.1	0
2	Evaluation of novel nutraceuticals based on the combination of oat beta-glucans and a green coffee phenolic extract to combat obesity and its comorbidities. A randomized, dose–response, parallel trial. Food and Function, 2022, 13, 574-586.	2.1	7
3	Regular Consumption of Green Coffee Phenol, Oat β-Glucan and Green Coffee Phenol/Oat β-Glucan Supplements Does Not Change Body Composition in Subjects with Overweight and Obesity. Foods, 2022, 11, 679.	1.9	3
4	Sustained Consumption of a Decaffeinated Green Coffee Nutraceutical Has Limited Effects on Phenolic Metabolism and Bioavailability in Overweight/Obese Subjects. Nutrients, 2022, 14, 2445.	1.7	5
5	Bioavailability and nutrikinetics of rosemary tea phenolic compounds in humans. Food Research International, 2021, 139, 109815.	2.9	17
6	Study of the impact of a dynamic in vitro model of the colon (TIM-2) in the phenolic composition of two Mexican sauces. Food Research International, 2021, 139, 109917.	2.9	6
7	Bioconversion by gut microbiota of predigested mango (Mangifera indica L) â€~Ataulfo' peel polyphenols assessed in a dynamic (TIM-2) in vitro model of the human colon. Food Research International, 2021, 139, 109963.	2.9	16
8	Bioconversion of polyphenols and organic acids by gut microbiota of predigested Hibiscus sabdariffa L. calyces and Agave (A. tequilana Weber) fructans assessed in a dynamic in vitro model (TIM-2) of the human colon. Food Research International, 2021, 143, 110301.	2.9	12
9	Appetite and Satiety Effects of the Acute and Regular Consumption of Green Coffee Phenols and Green Coffee Phenol/Oat I ² -Glucan Nutraceuticals in Subjects with Overweight and Obesity. Foods, 2021, 10, 2511.	1.9	8
10	Nutritional and other health properties of olive pomace oil. Critical Reviews in Food Science and Nutrition, 2020, 60, 3506-3521.	5.4	44
11	Yerba mate may prevent diabetes according to a crossover, randomized, controlled study in humans. Proceedings of the Nutrition Society, 2020, 79, .	0.4	0
12	Yerba mate improves cardiovascular health in normocholesterolemic and hypercholesterolemic subjects. Proceedings of the Nutrition Society, 2020, 79, .	0.4	0
13	Green/Roasted Coffee May Reduce Cardiovascular Risk in Hypercholesterolemic Subjects by Decreasing Body Weight, Abdominal Adiposity and Blood Pressure. Foods, 2020, 9, 1191.	1.9	6
14	Consuming nutritional doses of olive pomace oil fulfils recommended dietary allowances of alpha-tocopherol. Results from a randomized clinical trial. Proceedings of the Nutrition Society, 2020, 79, .	0.4	2
15	Dose-response study of the effect of a nutraceutical combining oat beta-glucan and green coffee hydroxycinnamates in overweight/obese subjects. Proceedings of the Nutrition Society, 2020, 79, .	0.4	0
16	Cocoa colonic phenolic metabolites are related to HDL-cholesterol raising effects and methylxanthine metabolites and insoluble dietary fibre to anti-inflammatory and hypoglycemic effects in humans. PeerJ, 2020, 8, e9953.	0.9	7
17	Moderate consumption of a soluble green/roasted coffee rich in caffeoylquinic acids reduces cardiovascular risk markers: results from a randomized, cross-over, controlled trial in healthy and hypercholesterolemic subjects. European Journal of Nutrition, 2019, 58, 865-878.	1.8	75
18	Flavanol Bioavailability in Two Cocoa Products with Different Phenolic Content. A Comparative Study in Humans, Nutrients, 2019, 11, 1441.	1.7	38

#	Article	IF	CITATIONS
19	TNF-α-induced oxidative stress and endothelial dysfunction in EA.hy926 cells is prevented by mate and green coffee extracts, 5-caffeoylquinic acid and its microbial metabolite, dihydrocaffeic acid. International Journal of Food Sciences and Nutrition, 2019, 70, 267-284.	1.3	38
20	Bioavailability and metabolism of rosemary infusion polyphenols using Cacoâ€⊋ and HepG2 cell model systems. Journal of the Science of Food and Agriculture, 2018, 98, 3741-3751.	1.7	24
21	Regularly consuming a green/roasted coffee blend reduces the risk of metabolic syndrome. European Journal of Nutrition, 2018, 57, 269-278.	1.8	63
22	Improved LC-MSn characterization of hydroxycinnamic acid derivatives and flavonols in different commercial mate (Ilex paraguariensis) brands. Quantification of polyphenols, methylxanthines, and antioxidant activity. Food Chemistry, 2018, 241, 232-241.	4.2	66
23	A Comprehensive Characterisation of Rosemary tea Obtained from <scp><i>Rosmarinus officinalis</i></scp> L. Collected in a subâ€Humid Area of Tunisia. Phytochemical Analysis, 2018, 29, 87-100.	1.2	26
24	Bioavailability of hydroxycinnamates in an instant green/roasted coffee blend in humans. Identification of novel colonic metabolites. Food and Function, 2018, 9, 331-343.	2.1	49
25	Absorption and metabolism of yerba mate phenolic compounds in humans. Food Chemistry, 2018, 240, 1028-1038.	4.2	71
26	Polyphenol content, <i>in vitro</i> bioaccessibility and antioxidant capacity of widely consumed beverages. Journal of the Science of Food and Agriculture, 2018, 98, 1397-1406.	1.7	42
27	The colonic metabolites dihydrocaffeic acid and dihydroferulic acid are more effective inhibitors of in vitro platelet activation than their phenolic precursors. Food and Function, 2017, 8, 1333-1342.	2.1	40
28	Antiproliferative and cytotoxic effects of green coffee and yerba mate extracts, their main hydroxycinnamic acids, methylxanthine and metabolites in different human cell lines. Food and Chemical Toxicology, 2017, 106, 125-138.	1.8	42
29	Effects of <i>in vitro</i> digestion and storage on the phenolic content and antioxidant capacity of a red grape pomace. International Journal of Food Sciences and Nutrition, 2017, 68, 188-200.	1.3	29
30	LC–MS n characterization of saponins in mate (llex paraguariens, St. Hil) and their quantification by HPLC-DAD. Journal of Food Composition and Analysis, 2017, 63, 164-170.	1.9	9
31	Effect of Cocoa and Its Flavonoids on Biomarkers of Inflammation: Studies of Cell Culture, Animals and Humans. Nutrients, 2016, 8, 212.	1.7	81
32	Synthesis and Antioxidant Activity of Alkyl Nitroderivatives of Hydroxytyrosol. Molecules, 2016, 21, 656.	1.7	22
33	Exhaustive Qualitative LC-DAD-MS ^{<i>n</i>} Analysis of Arabica Green Coffee Beans: Cinnamoyl-glycosides and Cinnamoylshikimic Acids as New Polyphenols in Green Coffee. Journal of Agricultural and Food Chemistry, 2016, 64, 9663-9674.	2.4	46
34	Dihydrocaffeic acid, a major microbial metabolite of chlorogenic acids, shows similar protective effect than a yerba mate phenolic extract against oxidative stress in HepG2 cells. Food Research International, 2016, 87, 25-33.	2.9	38
35	Long-term consumption of a green/roasted coffee blend positively affects glucose metabolism and insulin resistance in humans. Food Research International, 2016, 89, 1023-1028.	2.9	32
36	Evaluation of the Bioavailability and Metabolism of Nitroderivatives of Hydroxytyrosol Using Caco-2 and HepG2 Human Cell Models. Journal of Agricultural and Food Chemistry, 2016, 64, 2289-2297.	2.4	11

#	Article	IF	CITATIONS
37	Hydroxytyrosol in functional hydroxytyrosol-enriched biscuits is highly bioavailable and decreases oxidised low density lipoprotein levels in humans. Food Chemistry, 2016, 205, 248-256.	4.2	58
38	A phenolic extract from grape by-products and its main hydroxybenzoic acids protect Caco-2 cells against pro-oxidant induced toxicity. Food and Chemical Toxicology, 2016, 88, 65-74.	1.8	48
39	Anti-HIV-1 activity of a tripodal receptor that recognizes mannose oligomers. European Journal of Medicinal Chemistry, 2015, 106, 132-143.	2.6	10
40	Chemical characterization and chemo-protective activity of cranberry phenolic powders in a model cell culture. Response of the antioxidant defenses and regulation of signaling pathways. Food Research International, 2015, 71, 68-82.	2.9	41
41	Synthesis and antioxidant evaluation of isochroman-derivatives of hydroxytyrosol: Structure–activity relationship. Food Chemistry, 2015, 173, 313-320.	4.2	35
42	Effects of bioactive constituents in functional cocoa products on cardiovascular health in humans. Food Chemistry, 2015, 174, 214-218.	4.2	55
43	An aqueous pomegranate seed extract ameliorates oxidative stress of human hepatoma <scp>HepG2</scp> cells. Journal of the Science of Food and Agriculture, 2014, 94, 1622-1627.	1.7	14
44	Cocoa flavonoid epicatechin protects pancreatic beta cell viability and function against oxidative stress. Molecular Nutrition and Food Research, 2014, 58, 447-456.	1.5	92
45	Regular consumption of a cocoa product improves the cardiometabolic profile in healthy and moderately hypercholesterolaemic adults. British Journal of Nutrition, 2014, 111, 122-134.	1.2	70
46	Theobromine, caffeine, and theophylline metabolites in human plasma and urine after consumption of soluble cocoa products with different methylxanthine contents. Food Research International, 2014, 63, 446-455.	2.9	46
47	Microbial phenolic metabolites improve glucose-stimulated insulin secretion and protect pancreatic beta cells against tert-butyl hydroperoxide-induced toxicity via ERKs and PKC pathways. Food and Chemical Toxicology, 2014, 66, 245-253.	1.8	73
48	Antioxidant and functional properties of a high dietary fibre powder from carambola (<i><scp>A</scp>verrhoa carambola </i> <scp>L</scp> .) pomace. International Journal of Food Science and Technology, 2014, 49, 2101-2110.	1.3	7
49	Hypocholesterolaemic and antioxidant effects of yerba mate (llex paraguariensis) in high-cholesterol fed rats. Fìtoterapìâ, 2014, 92, 219-229.	1.1	41
50	Realistic intake of a flavanol-rich soluble cocoa product increases HDL-cholesterol without inducing anthropometric changes in healthy and moderately hypercholesterolemic subjects. Food and Function, 2014, 5, 364.	2.1	40
51	Comparative evaluation of the metabolic effects of hydroxytyrosol and its lipophilic derivatives (hydroxytyrosyl acetate and ethyl hydroxytyrosyl ether) in hypercholesterolemic rats. Food and Function, 2014, 5, 1556-1563.	2.1	52
52	Pharmacokinetics of caffeine and its metabolites in plasma and urine after consuming a soluble green/roasted coffee blend by healthy subjects. Food Research International, 2014, 64, 125-133.	2.9	49
53	Synthesis and Antioxidant Activity of Nitrohydroxytyrosol and Its Acyl Derivatives. Journal of Agricultural and Food Chemistry, 2014, 62, 10297-10303.	2.4	26
54	Cocoa flavanols show beneficial effects in cultured pancreatic beta cells and liver cells to prevent the onset of type 2 diabetes. Food Research International, 2014, 63, 400-408.	2.9	16

#	Article	IF	CITATIONS
55	Green coffee hydroxycinnamic acids but not caffeine protect human HepG2 cells against oxidative stress. Food Research International, 2014, 62, 1038-1046.	2.9	75
56	Effects of consuming diets containing Agave tequilana dietary fibre and jamaica calyces on body weight gain and redox status in hypercholesterolemic rats. Food Chemistry, 2014, 148, 54-59.	4.2	29
57	Molecular mechanisms involved in the protective effect of selenocystine against methylmercury-induced cell death in human HepG2 cells. Food and Chemical Toxicology, 2013, 59, 554-563.	1.8	23
58	Hydroxytyrosyl ethyl ether exhibits stronger intestinal anticarcinogenic potency and effects on transcript profiles compared to hydroxytyrosol. Food Chemistry, 2013, 138, 1172-1182.	4.2	16
59	Stability and bioactivity of a Bowman–Birk inhibitor in orange juice during processing and storage. Food and Function, 2013, 4, 1051.	2.1	9
60	Effect of phlorotannin-rich extracts of Ascophyllum nodosum and Himanthalia elongata (Phaeophyceae) on cellular oxidative markers in human HepG2 cells. Journal of Applied Phycology, 2013, 25, 1-11.	1.5	32
61	Cocoa flavonoids improve insulin signalling and modulate glucose production via <scp>AKT</scp> and <scp>AMPK</scp> in <scp>H</scp> ep <scp>G</scp> 2 cells. Molecular Nutrition and Food Research, 2013, 57, 974-985.	1.5	126
62	Anticancer Activity of Olive Oil Hydroxytyrosyl Acetate in Human Adenocarcinoma Caco-2 Cells. Journal of Agricultural and Food Chemistry, 2013, 61, 3264-3269.	2.4	24
63	Synthesis and Bioactivity Profile of 5- <i>S</i> -Lipoylhydroxytyrosol-Based Multidefense Antioxidants with a Sizeable (Poly)sulfide Chain. Journal of Agricultural and Food Chemistry, 2013, 61, 1710-1717.	2.4	14
64	Epicatechin Gallate Induces Cell Death via p53 Activation and Stimulation of p38 and JNK in Human Colon Cancer SW480 Cells. Nutrition and Cancer, 2013, 65, 718-728.	0.9	48
65	Cocoa polyphenols prevent inflammation in the colon of azoxymethane-treated rats and in TNF-α-stimulated Caco-2 cells. British Journal of Nutrition, 2013, 110, 206-215.	1.2	69
66	Cocoa Phenolic Extract Protects Pancreatic Beta Cells against Oxidative Stress. Nutrients, 2013, 5, 2955-2968.	1.7	50
67	Signal Transduction Pathways Involved in the Chemo-Preventive Effect of Dietary Antioxidants: Study in HepG2 as a Cell Culture Model. Current Nutrition and Food Science, 2012, 8, 112-121.	0.3	1
68	Nitroderivatives of olive oil phenols protect HepG2 cells against oxidative stress. Food and Chemical Toxicology, 2012, 50, 3752-3758.	1.8	16
69	Chemo-protective activity and characterization of phenolic extracts from Corema album. Food Research International, 2012, 49, 728-738.	2.9	39
70	Protective effects of papaya extracts on tert-butyl hydroperoxide mediated oxidative injury to human liver cells (An in-vitro study). Free Radicals and Antioxidants, 2012, 2, 10-19.	0.2	10
71	Phloroglucinol: Antioxidant properties and effects on cellular oxidative markers in human HepG2 cell line. Food and Chemical Toxicology, 2012, 50, 2886-2893.	1.8	59
72	Effects of regularly consuming dietary fibre rich soluble cocoa products on bowel habits in healthy subjects: a free-living, two-stage, randomized, crossover, single-blind intervention. Nutrition and Metabolism, 2012, 9, 33.	1.3	6

#	Article	IF	CITATIONS
73	Quercetin Attenuates TNF-Induced Inflammation in Hepatic Cells by Inhibiting the NF-κB Pathway. Nutrition and Cancer, 2012, 64, 588-598.	0.9	61
74	Digestive stability of hydroxytyrosol, hydroxytyrosyl acetate and alkyl hydroxytyrosyl ethers. International Journal of Food Sciences and Nutrition, 2012, 63, 703-707.	1.3	45
75	Hypotensive, hypoglycaemic and antioxidant effects of consuming a cocoa product in moderately hypercholesterolemic humans. Food and Function, 2012, 3, 867.	2.1	28
76	Procyanidin B2 induces Nrf2 translocation and glutathione S-transferase P1 expression via ERKs and p38-MAPK pathways and protect human colonic cells against oxidative stress. European Journal of Nutrition, 2012, 51, 881-892.	1.8	121
77	Quercetin modulates Nrf2 and glutathione-related defenses in HepG2 cells: Involvement of p38. Chemico-Biological Interactions, 2012, 195, 154-164.	1.7	155
78	Hydroxytyrosyl acetate contributes to the protective effects against oxidative stress of virgin olive oil. Food Chemistry, 2012, 131, 869-878.	4.2	27
79	Alkyl Hydroxytyrosyl Ethers Show Protective Effects against Oxidative Stress in HepG2 Cells. Journal of Agricultural and Food Chemistry, 2011, 59, 5964-5976.	2.4	32
80	Dietary flavanols exert different effects on antioxidant defenses and apoptosis/proliferation in Caco-2 and SW480 colon cancer cells. Toxicology in Vitro, 2011, 25, 1771-1781.	1.1	49
81	Procyanidin B2 and a cocoa polyphenolic extract inhibit acrylamide-induced apoptosis in human Caco-2 cells by preventing oxidative stress and activation of JNK pathway. Journal of Nutritional Biochemistry, 2011, 22, 1186-1194.	1.9	123
82	Comparative effects of dietary flavanols on antioxidant defences and their response to oxidant-induced stress on Caco2 cells. European Journal of Nutrition, 2011, 50, 313-322.	1.8	77
83	Cocoaâ€rich diet prevents azoxymethaneâ€induced colonic preneoplastic lesions in rats by restraining oxidative stress and cell proliferation and inducing apoptosis. Molecular Nutrition and Food Research, 2011, 55, 1895-1899.	1.5	37
84	Acetylation of hydroxytyrosol enhances its transport across differentiated Caco-2 cell monolayers. Food Chemistry, 2011, 125, 865-872.	4.2	65
85	Preparation and antioxidant activity of tyrosyl and homovanillyl ethers. Food Chemistry, 2011, 129, 1169-1178.	4.2	24
86	Olive oil hydroxytyrosol reduces toxicity evoked by acrylamide in human Caco-2 cells by preventing oxidative stress. Toxicology, 2011, 288, 43-48.	2.0	58
87	Epicatechin induces NF-κB, activator protein-1 (AP-1) and nuclear transcription factor erythroid 2p45-related factor-2 (Nrf2) via phosphatidylinositol-3-kinase/protein kinase B (PI3K/AKT) and extracellular regulated kinase (ERK) signalling in HepG2 cells. British Journal of Nutrition, 2010, 103, 168-179	1.2	105
88	Hydroxytyrosol induces antioxidant/detoxificant enzymes and Nrf2 translocation <i>via</i> extracellular regulated kinases and phosphatidylinositol-3-kinase/protein kinase B pathways in HepG2 cells. Molecular Nutrition and Food Research, 2010, 54, 956-966.	1.5	114
89	Cocoa flavonoids up-regulate antioxidant enzyme activity via the ERK1/2 pathway to protect against oxidative stress-induced apoptosis in HepG2 cells. Journal of Nutritional Biochemistry, 2010, 21, 196-205.	1.9	126
90	Protection of human HepG2 cells against oxidative stress by the flavonoid epicatechin. Phytotherapy Research, 2010, 24, 503-509.	2.8	51

#	Article	IF	CITATIONS
91	Quercetin Modulates NF-κ B and AP-1/JNK Pathways to Induce Cell Death in Human Hepatoma Cells. Nutrition and Cancer, 2010, 62, 390-401.	0.9	87
92	An inter-laboratory validation of methods of lipid peroxidation measurement in UVA-treated human plasma samples. Free Radical Research, 2010, 44, 1203-1215.	1.5	56
93	Nutritional and Antioxidant Properties of Different Brown and Red Spanish Edible Seaweeds. Food Science and Technology International, 2010, 16, 361-370.	1.1	112
94	Transepithelial Transport and Metabolism of New Lipophilic Ether Derivatives of Hydroxytyrosol by Enterocyte-like Caco-2/TC7 Cells. Journal of Agricultural and Food Chemistry, 2010, 58, 11501-11509.	2.4	35
95	Molecular mechanisms of methylmercury-induced cell death in human HepG2 cells. Food and Chemical Toxicology, 2010, 48, 1405-1411.	1.8	32
96	Uptake and Metabolism of New Synthetic Lipophilic Derivatives, Hydroxytyrosyl Ethers, by Human Hepatoma HepG2 Cells. Journal of Agricultural and Food Chemistry, 2010, 58, 798-806.	2.4	21
97	Uptake, Metabolism and Biological Effect of the Olive Oil Phenol Hydroxytyrosol in Human HepG2 Cells. , 2010, , 1157-1165.		1
98	Time-course regulation of survival pathways by epicatechin on HepG2 cells. Journal of Nutritional Biochemistry, 2009, 20, 115-124.	1.9	38
99	Antioxidant properties of tuna-skin and bovine-hide gelatin films induced by the addition of oregano and rosemary extracts. Food Chemistry, 2009, 112, 18-25.	4.2	201
100	Antioxidant activity evaluation of alkyl hydroxytyrosyl ethers, a new class of hydroxytyrosol derivatives. Food Chemistry, 2009, 115, 86-91.	4.2	70
101	Biscuit Melanoidins of Different Molecular Masses Protect Human HepG2 Cells against Oxidative Stress. Journal of Agricultural and Food Chemistry, 2009, 57, 7250-7258.	2.4	46
102	A diet rich in cocoa attenuates N-nitrosodiethylamine-induced liver injury in rats. Food and Chemical Toxicology, 2009, 47, 2499-2506.	1.8	39
103	Composition and antioxidant capacity of low-salt meat emulsion model systems containing edible seaweeds. Meat Science, 2009, 83, 492-498.	2.7	109
104	A Cell Culture Model for the Assessment of the Chemopreventive Potential of Dietary Compounds Current Nutrition and Food Science, 2009, 5, 56-64.	0.3	36
105	Timeâ€course regulation of quercetin on cell survival/proliferation pathways in human hepatoma cells. Molecular Nutrition and Food Research, 2008, 52, 457-464.	1.5	28
106	Influence of different types and proportions of added edible seaweeds on characteristics of low-salt gel/emulsion meat systems. Meat Science, 2008, 79, 767-776.	2.7	192
107	Protection of Human HepG2 Cells against Oxidative Stress by Cocoa Phenolic Extract. Journal of Agricultural and Food Chemistry, 2008, 56, 7765-7772.	2.4	102
108	Hypolipidemic Effect in Cholesterol-Fed Rats of a Soluble Fiber-Rich Product Obtained from Cocoa Husks. Journal of Agricultural and Food Chemistry, 2008, 56, 6985-6993.	2.4	43

#	Article	IF	CITATIONS
109	LC/MS characterization of phenolic constituents of mate (llex paraguariensis, St. Hil.) and its antioxidant activity compared to commonly consumed beverages. Food Research International, 2007, 40, 393-405.	2.9	257
110	Molecular Mechanisms of (â^)-Epicatechin and Chlorogenic Acid on the Regulation of the Apoptotic and Survival/Proliferation Pathways in a Human Hepatoma Cell Line. Journal of Agricultural and Food Chemistry, 2007, 55, 2020-2027.	2.4	115
111	Effect of coffee Melanoidin on human hepatoma HepG2 cells. Protection against oxidative stress induced bytert-butylhydroperoxide. Molecular Nutrition and Food Research, 2007, 51, 536-545.	1.5	82
112	Chromatographic and electrophoretic methods for the analysis of biomarkers of oxidative damage to macromolecules (DNA, lipids, and proteins). Journal of Separation Science, 2007, 30, 175-191.	1.3	90
113	Dietary fibre composition, antioxidant capacity and physico-chemical properties of a fibre-rich product from cocoa (Theobroma cacao L.). Food Chemistry, 2007, 104, 948-954.	4.2	226
114	A diet rich in dietary fiber from cocoa improves lipid profile and reduces malondialdehyde in hypercholesterolemic rats. Nutrition, 2007, 23, 332-341.	1.1	109
115	Selenium methylselenocysteine protects human hepatoma HepG2 cells against oxidative stress induced by tert-butyl hydroperoxide. Analytical and Bioanalytical Chemistry, 2007, 389, 2167-2178.	1.9	48
116	Effect of the olive oil phenol hydroxytyrosol on human hepatoma HepG2 cells. European Journal of Nutrition, 2007, 46, 70-78.	1.8	151
117	Uptake and Metabolism of Hydroxycinnamic Acids (Chlorogenic, Caffeic, and Ferulic Acids) by HepG2 Cells as a Model of the Human Liver. Journal of Agricultural and Food Chemistry, 2006, 54, 8724-8732.	2.4	84
118	Quercetin Induces Apoptosis via Caspase Activation, Regulation of Bcl-2, and Inhibition of PI-3-Kinase/Akt and ERK Pathways in a Human Hepatoma Cell Line (HepG2). Journal of Nutrition, 2006, 136, 2715-2721.	1.3	295
119	Influence of quercetin and rutin on growth and antioxidant defense system of a human hepatoma cell line (HepG2). European Journal of Nutrition, 2006, 45, 19-28.	1.8	220
120	Quercetin protects human hepatoma HepG2 against oxidative stress induced by tert-butyl hydroperoxide. Toxicology and Applied Pharmacology, 2006, 212, 110-118.	1.3	223
121	Determination of malondialdehyde (MDA) by high-performance liquid chromatography in serum and liver as a biomarker for oxidative stressApplication to a rat model for hypercholesterolemia and evaluation of the effect of diets rich in phenolic antioxidants from fruits. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences. 2005. 827. 76-82.	1.2	300
122	Response of the antioxidant defense system totert-butyl hydroperoxide and hydrogen peroxide in a human hepatoma cell line (HepG2). Journal of Biochemical and Molecular Toxicology, 2005, 19, 119-128.	1.4	193
123	Quercetin properties as a functional ingredient in omega-3 enriched fish gels fed to rats. Journal of the Science of Food and Agriculture, 2005, 85, 1651-1659.	1.7	15
124	Metabolism of the Olive Oil Phenols Hydroxytyrosol, Tyrosol, and Hydroxytyrosyl Acetate by Human Hepatoma HepG2 Cells. Journal of Agricultural and Food Chemistry, 2005, 53, 9897-9905.	2.4	75
125	Comparative Effects of Food-Derived Polyphenols on the Viability and Apoptosis of a Human Hepatoma Cell Line (HepG2). Journal of Agricultural and Food Chemistry, 2005, 53, 1271-1280.	2.4	129
126	Determination of malondialdehyde by liquid chromatography as the 2,4-dinitrophenylhydrazone derivative. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2004, 805, 33-39.	1.2	78

#	Article	IF	CITATIONS
127	Effect of grape antioxidant dietary fiber on the total antioxidant capacity and the activity of liver antioxidant enzymes in rats. Nutrition Research, 2003, 23, 1251-1267.	1.3	208
128	Dietary Modulation of Bacterial Fermentative Capacity by Edible Seaweeds in Rats. Journal of Agricultural and Food Chemistry, 2001, 49, 2663-2668.	2.4	29
129	Dietary Fiber-Associated Compounds. , 2001, , 404-422.		1
130	Antioxidant Activity of Dietary Polyphenols As Determined by a Modified Ferric Reducing/Antioxidant Power Assay. Journal of Agricultural and Food Chemistry, 2000, 48, 3396-3402.	2.4	1,526
131	In Vitro Determination of the Indigestible Fraction in Foods:Â An Alternative to Dietary Fiber Analysis. Journal of Agricultural and Food Chemistry, 2000, 48, 3342-3347.	2.4	179
132	Effect of processing on the non-starch polysaccharides and in vitro starch digestibility of legumes / Efecto del procesado en el contenido de polisacáridos no amiláceos y la digestibilidad in vitro del almidón de legumbres. Food Science and Technology International, 1999, 5, 415-423.	1.1	14
133	Composition of underexploited Indian pulses. Comparison with common legumes. Food Chemistry, 1999, 64, 185-192.	4.2	97
134	Assessment of some parameters involved in the gelatinization and retrogration of starch. Food Chemistry, 1999, 66, 181-187.	4.2	132
135	Nutritional evaluation of carbohydrates in the Spanish diet: Non-starch polysaccharides and in vitro starch digestibility of breads and breakfast products. Food Research International, 1998, 31, 129-135.	2.9	19
136	Characterization of Syrups and Dietary Fiber Obtained from Mesquite Pods (Prosopis pallidaL). Journal of Agricultural and Food Chemistry, 1998, 46, 1727-1733.	2.4	22
137	Effect of Various Processing Methods on the in Vitro Starch Digestibility and Resistant Starch Content of Indian Pulses. Journal of Agricultural and Food Chemistry, 1998, 46, 4667-4674.	2.4	150
138	Polyphenols: Chemistry, Dietary Sources, Metabolism, and Nutritional Significance. Nutrition Reviews, 1998, 56, 317-333.	2.6	2,905
139	Resistant starch in potatoes deep-fried in olive oil. Food Chemistry, 1997, 59, 269-272.	4.2	37
140	High dietary fibre powders from orange and lime peels: associated polyphenols and antioxidant capacity. Food Research International, 1996, 29, 757-762.	2.9	70
141	Degradation of polyphenols (catechin and tannic acid) in the rat intestinal tract. Effect on coloic fermentation and faecal output. British Journal of Nutrition, 1994, 71, 933-946.	1.2	101
142	Composition and potential uses of mesquite pods (Prosopis pallida L): Comparison with carob pods (Ceratonia siliqua L). Journal of the Science of Food and Agriculture, 1994, 65, 303-306.	1.7	49
143	Sources of error in dietary fibre analysis. Food Chemistry, 1994, 50, 331-342.	4.2	71
144	Polyphenols as dietary fiber associated compounds. Comparative study on in vivo and in vitro properties. Journal of Agricultural and Food Chemistry, 1994, 42, 1481-1487.	2.4	91

#	Article	IF	CITATIONS
145	Dietary non-extractable condensed tannins as indigestible compounds: Effects on faecal weight, and protein and fat excretion. Journal of the Science of Food and Agriculture, 1993, 63, 63-68.	1.7	38
146	Resistant Starch in Foods: Modified Method for Dietary Fiber Residues. Journal of Food Science, 1993, 58, 642-643.	1.5	99
147	Effects of dietary fibre and tannins from apple pulp on the composition of faeces in rats. British Journal of Nutrition, 1992, 67, 463-473.	1.2	53