Stefania Gilardoni

List of Publications by Citations

Source: https://exaly.com/author-pdf/5895083/stefania-gilardoni-publications-by-citations.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

80
papers

2,718
citations

28
h-index

90
ext. papers

28
b-index

51
g-index

4.39
L-index

#	Paper	IF	Citations
80	Particulate matter, air quality and climate: lessons learned and future needs. <i>Atmospheric Chemistry and Physics</i> , 2015 , 15, 8217-8299	6.8	462
79	General overview: European Integrated project on Aerosol Cloud Climate and Air Quality interactions (EUCAARI) Integrating aerosol research from nano to global scales. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 13061-13143	6.8	231
78	Direct observation of aqueous secondary organic aerosol from biomass-burning emissions. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, 10013-8	11.5	170
77	Spatial and seasonal variability of carbonaceous aerosol across Italy. <i>Atmospheric Environment</i> , 2014 , 99, 587-598	5.3	112
76	Better constraints on sources of carbonaceous aerosols using a combined ¹⁴ C Imacro tracer analysis in a European rural background site. Atmospheric Chemistry and Physics, 2011, 11, 5685-5700	6.8	111
75	Characterization of organic ambient aerosol during MIRAGE 2006 on three platforms. <i>Atmospheric Chemistry and Physics</i> , 2009 , 9, 5417-5432	6.8	95
74	Sources for PM air pollution in the Po Plain, Italy: II. Probabilistic uncertainty characterization and sensitivity analysis of secondary and primary sources. <i>Atmospheric Environment</i> , 2012 , 50, 203-213	5.3	86
73	Regional variation of organic functional groups in aerosol particles on four U.S. east coast platforms during the International Consortium for Atmospheric Research on Transport and Transformation 2004 campaign. <i>Journal of Geophysical Research</i> , 2007 , 112,		85
72	Fog scavenging of organic and inorganic aerosol in the Po Valley. <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 6967-6981	6.8	80
71	Polycyclic aromatic hydrocarbons in the atmosphere: monitoring, sources, sinks and fate. II: Sinks and fate. Annali Di Chimica, 2004 , 94, 257-68		73
70	Yellow Pr-zircon pigments: The role of praseodymium and of the mineralizer. <i>Journal of the European Ceramic Society</i> , 2004 , 24, 3603-3611	6	70
69	Classification of multiple types of organic carbon composition in atmospheric particles by scanning transmission X-ray microscopy analysis. <i>Atmospheric Environment</i> , 2007 , 41, 9435-9451	5.3	69
68	Oxygenated organic functional groups and their sources in single and submicron organic particles in MILAGRO 2006 campaign. <i>Atmospheric Chemistry and Physics</i> , 2009 , 9, 6849-6863	6.8	68
67	Impact on short-lived climate forcers increases projected warming due to deforestation. <i>Nature Communications</i> , 2018 , 9, 157	17.4	54
66	Fog occurrence and chemical composition in the Po valley over the last twenty years. <i>Atmospheric Environment</i> , 2014 , 98, 394-401	5.3	47
65	South African EUCAARI measurements: seasonal variation of trace gases and aerosol optical properties. <i>Atmospheric Chemistry and Physics</i> , 2012 , 12, 1847-1864	6.8	46
64	First Results of the Carbonaceous Aerosol in Rome and Environs (CARE) Experiment: Beyond Current Standards for PM10. <i>Atmosphere</i> , 2017 , 8, 249	2.7	42

63	Determination of the biogenic secondary organic aerosol fraction in the boreal forest by NMR spectroscopy. <i>Atmospheric Chemistry and Physics</i> , 2012 , 12, 941-959	6.8	42
62	Polycyclic aromatic hydrocarbons in the atmosphere: monitoring, sources, sinks and fate. I: Monitoring and sources. <i>Annali Di Chimica</i> , 2004 , 94, 17-32		41
61	A new approach for archaeological ceramics analysis using total reflection X-ray fluorescence spectrometry. <i>Spectrochimica Acta, Part B: Atomic Spectroscopy</i> , 2003 , 58, 177-184	3.1	40
60	Sources of carbonaceous aerosol in the Amazon basin. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 274	7628764	4 39
59	The influence of iron content on the promotion of the zircon structure and the optical properties of pink coral pigments. <i>Journal of the European Ceramic Society</i> , 2005 , 25, 911-917	6	37
58	Molecular insights on aging and aqueous-phase processing from ambient biomass burning emissions-influenced Po Valley fog and aerosol. <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 13197-132	6,8 114	35
57	Characteristics of brown carbon in the urban Po Valley atmosphere. <i>Atmospheric Chemistry and Physics</i> , 2017 , 17, 313-326	6.8	34
56	Evidence for ambient dark aqueous SOA formation in the Po Valley, Italy. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 8095-8108	6.8	34
55	Single-particle oxidation state and morphology of atmospheric iron aerosols. <i>Journal of Geophysical Research</i> , 2008 , 113,		32
54	Enhanced toxicity of aerosol in fog conditions in the Po Valley, Italy. <i>Atmospheric Chemistry and Physics</i> , 2017 , 17, 7721-7731	6.8	30
53	Extensive Soot Compaction by Cloud Processing from Laboratory and Field Observations. <i>Scientific Reports</i> , 2019 , 9, 11824	4.9	29
52	Size-resolved aerosol composition at an urban and a rural site in the Po Valley in summertime: implications for secondary aerosol formation. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 10879-10897	76.8	27
51	The impact of biomass burning and aqueous-phase processing on air quality: a multi-year source apportionment study in the Po Valley, Italy. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 1233-1254	6.8	26
50	MSWI fly ash particle analysis by scanning electron microscopy-energy dispersive X-ray spectroscopy. <i>Environmental Science & Environmental Science & </i>	10.3	24
49	Online determination of levoglucosan in ambient aerosols with particle-into-liquid sampler I high-performance anion-exchange chromatography Imass spectrometry (PILSHPAECMS). <i>Atmospheric Measurement Techniques</i> , 2013 , 6, 2839-2849	4	23
48	Evaluation of receptor and chemical transport models for PM10 source apportionment. <i>Atmospheric Environment: X</i> , 2020 , 5, 100053	2.8	23
47	Organic composition of single and submicron particles in different regions of western North America and the eastern Pacific during INTEX-B 2006. <i>Atmospheric Chemistry and Physics</i> , 2009 , 9, 5433-5	5446	21
46	On the water-soluble organic nitrogen concentration and mass size distribution during the fog season in the Po Valley, Italy. <i>Science of the Total Environment</i> , 2014 , 485-486, 103-109	10.2	19

45	Organic aerosol evolution and transport observed at Mt. Cimone (2165 m a.s.l.), Italy, during the PEGASOS campaign. <i>Atmospheric Chemistry and Physics</i> , 2015 , 15, 11327-11340	6.8	17
44	Iron doped zirconium silicate prepared by a solgel procedure. The effect of the reaction conditions on the structure, morphology and optical properties of the powders. <i>Physical Chemistry Chemical Physics</i> , 2002 , 4, 5683-5689	3.6	16
43	Sources of organic aerosols in Europe: a modeling study using CAMx with modified volatility basis set scheme. <i>Atmospheric Chemistry and Physics</i> , 2019 , 19, 15247-15270	6.8	16
42	Using measurements for evaluation of black carbon modeling. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 439-455	6.8	15
41	Technological study of ancient ceramics produced in Casteldurante (central Italy) during the Renaissance. <i>Applied Physics A: Materials Science and Processing</i> , 2004 , 79, 335-339	2.6	15
40	Indoor air pollution exposure effects on lung and cardiovascular health in the High Himalayas, Nepal: An observational study. <i>European Journal of Internal Medicine</i> , 2019 , 61, 81-87	3.9	15
39	Investigating the role of chemical and physical processes on organic aerosol modelling with CAMx in the Po Valley during a winter episode. <i>Atmospheric Environment</i> , 2017 , 171, 126-142	5.3	13
38	Atmospheric aerosols localEegional discrimination for a semi-urban area in India. <i>Atmospheric Research</i> , 2016 , 168, 13-23	5.4	13
37	Particulate matter, air quality and climate: lessons learned and future needs		12
36	Oxygenated organic functional groups and their sources in single and submicron organic particles in MILAGRO 2006 campaign		10
35	Influence of semi- and intermediate-volatile organic compounds (S/IVOC) parameterizations, volatility distributions and aging schemes on organic aerosol modelling in winter conditions. <i>Atmospheric Environment</i> , 2019 , 213, 11-24	5.3	9
34	Marine and urban influences on summertime PM2.5 aerosol in the Po basin using mobile measurements. <i>Atmospheric Environment</i> , 2015 , 120, 447-454	5.3	9
33	Better constraints on sources of carbonaceous aerosols using a combined ¹⁴ C [macro tracer analysis in a European rural background site		9
32	Atmospheric Ice Nucleating Particle measurements at the high mountain observatory Mt. Cimone (2165[m a.s.l., Italy). <i>Atmospheric Environment</i> , 2017 , 171, 173-180	5.3	8
31	Characterizing source fingerprints and ageing processes in laboratory-generated secondary organic aerosols using proton-nuclear magnetic resonance (¹H-NMR) analysis and HPLC HULIS determination. <i>Atmospheric Chemistry and Physics</i> , 2017 , 17, 10405-10421	6.8	8
30	Impact of Air Pollution Controls on Radiation Fog Frequency in the Central Valley of California. Journal of Geophysical Research D: Atmospheres, 2019 , 124, 5889	4.4	7
29	1951 2 017 changes in the frequency of days with visibility higher than 10 km and 20 km in Italy.	5.3	6
	Atmospheric Environment, 2019 , 214, 116861	<i>J</i> • <i>J</i>	

(2017-2019)

27	Ground level ice nucleating particles measurements at Capo Granitola, a Mediterranean coastal site. <i>Atmospheric Research</i> , 2019 , 219, 57-64	5.4	5
26	On the functional form of particle number size distributions: influence of particle source and meteorological variables. <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 4831-4842	6.8	4
25	Advances in Organic Aerosol Characterization: From Complex to Simple. <i>Aerosol and Air Quality Research</i> , 2017 , 17, 1447-1451	4.6	4
24	Historical Changes in Seasonal Aerosol Acidity in the Po Valley (Italy) as Inferred from Fog Water and Aerosol Measurements. <i>Environmental Science & Environmental Science & </i>	10.3	4
23	Optimization of an urban particulate matter multi-element analysis method by inductively coupled plasmaatomic emission spectrometry (ICP-AES). <i>Annali Di Chimica</i> , 2003 , 93, 539-50		4
22	Pan-Arctic seasonal cycles and long-term trends of aerosol properties from 10 observatories. <i>Atmospheric Chemistry and Physics</i> , 2022 , 22, 3067-3096	6.8	4
21	Spatial and Temporal Variability of Carbonaceous Aerosol Absorption in the Po Valley. <i>Aerosol and Air Quality Research</i> , 2020 , 20, 2624-2639	4.6	3
20	South African EUCAARI Imeasurements: a site with high atmospheric variability		3
19	Fog scavenging of organic and inorganic aerosol in the Po Valley		3
18	Reconstructing Elemental Carbon Long-Term Trend in the Po Valley (Italy) from Fog Water Samples. <i>Atmosphere</i> , 2020 , 11, 580	2.7	2
17	Air Quality Characterization at Three Industrial Areas in Southern Italy. <i>Frontiers in Environmental Science</i> , 2020 , 7,	4.8	2
16	Chemical Composition of Aerosols of Different Origin 2016 , 183-221		2
15	Technological investigation of luster decorated ancient majolicas. <i>Materials Research Society Symposia Proceedings</i> , 2002 , 712, 841		2
14	Size-resolved aerosol composition at an urban and a rural site in the Po Valley in summertime: implications for secondary aerosol formation		2
13	Influence of biomass burning vapor wall loss correction on modeling organic aerosols in Europe by CAMx v6.50. <i>Geoscientific Model Development</i> , 2021 , 14, 1681-1697	6.3	2
12	The impact of biomass burning and aqueous-phase processing on air quality: a multi-year source apportionment study in the Po Valley, Italy 2019 ,		1
11	Aerosol and Air Quality 2016 , 553-596		1
	Characterizing source fingerprints and ageing processes in laboratory-generated secondary organic		

9	Preliminary results of the project Bupersitoltoncerning the atmospheric aerosol composition in Emilia-Romagna region, Italy: PM source apportionment and aerosol size distribution. <i>WIT Transactions on the Built Environment</i> , 2015 , 689-698	3	1
8	Determination of the biogenic secondary organic aerosol fraction in the boreal forest by AMS and NMR measurements		1
7	Light-Absorbing Particles in Snow and Ice: A Brief Journey Across Latitudes. <i>Springer Series in Light Scattering</i> , 2021 , 1-29	1.3	1
6	Organic aerosol evolution and transport observed at Mt. Cimone (2165 m a.s.l.), Italy, during the PEGASOS campaign		1
5	Sources of carbonaceous aerosol in the Amazon Basin		1
4	Differentiation of coarse-mode anthropogenic, marine and dust particles in the High Arctic islands of Svalbard. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 11317-11335	6.8	1
	Differentiation of coarse-mode anthropogenic, marine and dust particles in the High Arctic islands	6.8 4.2	