Manuel Coelho

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5894979/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Transferrin Receptor-Targeted Nanocarriers: Overcoming Barriers to Treat Glioblastoma. Pharmaceutics, 2022, 14, 279.	2.0	39
2	Nanocarriers Based on Gold Nanoparticles for Epigallocatechin Gallate Delivery in Cancer Cells. Pharmaceutics, 2022, 14, 491.	2.0	8
3	Factorial Design as a Tool for the Optimization of PLGA Nanoparticles for the Co-Delivery of Temozolomide and O6-Benzylguanine. Pharmaceutics, 2019, 11, 401.	2.0	38
4	Doxorubicin and Varlitinib Delivery by Functionalized Gold Nanoparticles Against Human Pancreatic Adenocarcinoma. Pharmaceutics, 2019, 11, 551.	2.0	19
5	Development of Parvifloron D-loaded Smart Nanoparticles to Target Pancreatic Cancer. Pharmaceutics, 2018, 10, 216.	2.0	26
6	Analyzing PEGylation through Molecular Dynamics Simulations. ChemistrySelect, 2018, 3, 8415-8427.	0.7	14
7	Gold Nanoparticles for Targeting Varlitinib to Human Pancreatic Cancer Cells. Pharmaceutics, 2018, 10, 91.	2.0	14
8	Resveratrol and Grape Extract-loaded Solid Lipid Nanoparticles for the Treatment of Alzheimer's Disease. Molecules, 2017, 22, 277.	1.7	222
9	Enhancing the efficiency of bortezomib conjugated to pegylated gold nanoparticles: an <i>in vitro</i> study on human pancreatic cancer cells and adenocarcinoma human lung alveolar basal epithelial cells. Expert Opinion on Drug Delivery, 2016, 13, 1075-1081.	2.4	17
10	Cellular uptake of PLGA nanoparticles targeted with anti-amyloid and anti-transferrin receptor antibodies for Alzheimer's disease treatment. Colloids and Surfaces B: Biointerfaces, 2016, 145, 8-13.	2.5	140
11	Functionalized gold nanoparticles improve afatinib delivery into cancer cells. Expert Opinion on Drug Delivery, 2016, 13, 133-141.	2.4	30
12	Immunoliposomes doubly targeted to transferrin receptor and to α-synuclein. Future Science OA, 2015, 1, FSO71.	0.9	18
13	PLGA nanoparticles as a platform for vitamin D-based cancer therapy. Beilstein Journal of Nanotechnology, 2015, 6, 1306-1318.	1.5	42
14	Structural characterization of functionalized gold nanoparticles for drug delivery in cancer therapy: a NMR based approach. Physical Chemistry Chemical Physics, 2015, 17, 18971-18979.	1.3	30
15	Supramolecular nanoscale assemblies for cancer diagnosis and therapy. Journal of Controlled Release, 2015, 213, 152-167.	4.8	26
16	Dual ligand immunoliposomes for drug delivery to the brain. Colloids and Surfaces B: Biointerfaces, 2015, 134, 213-219.	2.5	52
17	Interaction studies of amyloid beta-peptide with the natural compound resveratrol. , 2015, , .		10
18	Transferrin surface-modified PLGA nanoparticles-mediated delivery of a proteasome inhibitor to human pancreatic cancer cells. Journal of Biomedical Materials Research - Part A, 2015, 103, 1476-1484.	2.1	55

MANUEL COELHO

#	Article	IF	CITATIONS
19	Enhancing Proteasome-Inhibitor Effect by Functionalized Gold Nanoparticles. Journal of Biomedical Nanotechnology, 2014, 10, 717-723.	0.5	13
20	Microencapsulation of essential oils with biodegradable polymeric carriers for cosmetic applications. Chemical Engineering Journal, 2014, 245, 191-200.	6.6	253
21	Fluorinated beta-sheet breaker peptides. Journal of Materials Chemistry B, 2014, 2, 2259-2264.	2.9	44
22	Encapsulation of a proteasome inhibitor with gold-polysaccharide nanocarriers. Journal of Nanoparticle Research, 2014, 16, 1.	0.8	2
23	Targeting nanoparticles across the blood–brain barrier with monoclonal antibodies. Nanomedicine, 2014, 9, 709-722.	1.7	79
24	Pyranoflavylium Derivatives Extracted from Wine Grape as Photosensitizers in Solar Cells. Journal of the Brazilian Chemical Society, 2014, , .	0.6	5
25	Functionalized gold nanoparticles for drug delivery. , 2013, , .		Ο
26	Gold nanoparticle delivery-enhanced proteasome inhibitor effect in adenocarcinoma cells. Expert Opinion on Drug Delivery, 2013, 10, 1345-1352.	2.4	26
27	Carbohydrate particles as protein carriers and scaffolds: physico-chemical characterization and collagen stability. Journal of Nanoparticle Research, 2012, 14, 1.	0.8	8
28	Delivery of biomolecules by functionalized inorganic nanoparticles. , 2012, , .		1
29	Design of potential therapeutic peptides and carriers to inhibit amyloid β peptide aggregation. , 2012, , .		3
30	Epigallocatechin gallate-loaded polysaccharide nanoparticles for prostate cancer chemoprevention. Nanomedicine, 2011, 6, 79-87.	1.7	108
31	Nanostructure of polysaccharide complexes. Journal of Colloid and Interface Science, 2011, 363, 450-455.	5.0	34
32	Preservation of catechin antioxidant properties loaded in carbohydrate nanoparticles. Carbohydrate Polymers, 2011, 86, 147-153.	5.1	75
33	Controlling Amyloidâ€Ĥ² Peptide(1–42) Oligomerization and Toxicity by Fluorinated Nanoparticles. ChemBioChem, 2010, 11, 1905-1913.	1.3	42
34	Randomization of Amyloidâ€Î²â€Peptide(1â€42) Conformation by Sulfonated and Sulfated Nanoparticles Reduces Aggregation and Cytotoxicity. Macromolecular Bioscience, 2010, 10, 1152-1163.	2.1	35
35	Lipid/particle assemblies based on maltodextrin–gum arabic core as bio-carriers. Colloids and Surfaces B: Biointerfaces, 2010, 76, 449-455.	2.5	43
36	NMR structural analysis of epigallocatechin gallate loaded polysaccharide nanoparticles. Carbohydrate Polymers, 2010, 82, 861-866.	5.1	30

MANUEL COELHO

#	Article	IF	CITATIONS
37	Adsorption and Diffusion of Plasma Proteins on Hydrophilic and Hydrophobic Surfaces: Effect of Trifluoroethanol on Protein Structure. Langmuir, 2009, 25, 9879-9886.	1.6	52
38	Design and biological activity of β-sheet breaker peptide conjugates. Biochemical and Biophysical Research Communications, 2009, 380, 397-401.	1.0	45
39	Influence of fluorinated and hydrogenated nanoparticles on the structure and fibrillogenesis of amyloid beta-peptide. Biophysical Chemistry, 2008, 137, 35-42.	1.5	106
40	Adsorption of the Fusogenic Peptide B18 onto Solid Surfaces:Â Insights into the Mechanism of Peptide Assembly. Langmuir, 2007, 23, 5022-5028.	1.6	9
41	The Conformation of B18 Peptide in the Presence of Fluorinated and Alkylated Nanoparticles. ChemBioChem, 2005, 6, 280-283.	1.3	13
42	Effect of shear stress on adhering polyelectrolyte capsules. Journal of Colloid and Interface Science, 2004, 280, 68-75.	5.0	8
43	Nanocapsules With Functionalized Surfaces and Walls. IEEE Transactions on Nanobioscience, 2004, 3, 3-5.	2.2	6
44	Human Serum Albumin on Fluorinated Surfaces. Langmuir, 2003, 19, 7544-7550.	1.6	38
45	Two different approaches for RDC modelling when simulating a solvent deasphalting plant. Computers and Chemical Engineering, 2002, 26, 1369-1377.	2.0	8
46	Application of feedforward artificial neural networks to improve process control of PID-based control algorithms. Computers and Chemical Engineering, 2000, 24, 853-858.	2.0	21
47	Simulation and optimisation of atmospheric and vacuum distillations of a lube plant. Computer Aided Chemical Engineering, 2000, 8, 361-365.	0.3	1
48	Gas transfer in supported films made by molecular self-assembly of ionic polymers. Thin Solid Films, 1996, 284-285, 708-712.	0.8	95
49	Gas transfer in supported Langmuir-Blodgett films of polymeric lipids. Thin Solid Films, 1989, 180, 241-248.	0.8	19
50	Effects of heating on the molecular orientation of polymeric lipids. Thin Solid Films, 1989, 178, 227-232.	0.8	8