
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5894369/publications.pdf Version: 2024-02-01

FEELAN RDELLVINK

#	Article	IF	CITATIONS
1	Identification of the potential active site of the septal peptidoglycan polymerase FtsW. PLoS Genetics, 2022, 18, e1009993.	3.5	11
2	Metabolic labeling of the bacterial peptidoglycan by functionalized glucosamine. IScience, 2022, 25, 104753.	4.1	7
3	Real-time monitoring of peptidoglycan synthesis by membrane-reconstituted penicillin-binding proteins. ELife, 2021, 10, .	6.0	13
4	Brevibacillin 2V, a Novel Antimicrobial Lipopeptide With an Exceptionally Low Hemolytic Activity. Frontiers in Microbiology, 2021, 12, 693725.	3.5	13
5	Brevibacillin 2V Exerts Its Bactericidal Activity via Binding to Lipid II and Permeabilizing Cellular Membranes. Frontiers in Microbiology, 2021, 12, 694847.	3.5	2
6	PepBiotics, novel cathelicidin-inspired antimicrobials to fight pulmonary bacterial infections. Biochimica Et Biophysica Acta - General Subjects, 2021, 1865, 129951.	2.4	4
7	Lytic transglycosylase MltG cleaves in nascent peptidoglycan and produces short glycan strands. Cell Surface, 2021, 7, 100053.	3.0	21
8	Fluorescence anisotropy assays for high throughput screening of compounds binding to lipid II, PBP1b, FtsW and MurJ. Scientific Reports, 2020, 10, 6280.	3.3	12
9	SPOR Proteins Are Required for Functionality of Class A Penicillin-Binding Proteins in Escherichia coli. MBio, 2020, 11, .	4.1	15
10	Squalamine and Aminosterol Mimics Inhibit the Peptidoglycan Glycosyltransferase Activity of PBP1b. Antibiotics, 2020, 9, 373.	3.7	8
11	Mode of action of teixobactins in cellular membranes. Nature Communications, 2020, 11, 2848.	12.8	57
12	Non-lipid II targeting lantibiotics. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183244.	2.6	12
13	Structure of the Peptidoglycan Synthase Activator LpoP in Pseudomonas aeruginosa. Structure, 2020, 28, 643-650.e5.	3.3	9
14	The bacterial cell division protein fragment EFtsN binds to and activates the major peptidoglycan synthase PBP1b. Journal of Biological Chemistry, 2020, 295, 18256-18265.	3.4	15
15	An Engineered Double Lipid II Binding Motifs-Containing Lantibiotic Displays Potent and Selective Antimicrobial Activity against Enterococcus faecium. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	31
16	Outer membrane lipoprotein NlpI scaffolds peptidoglycan hydrolases within multiâ€enzyme complexes in <i>Escherichia coli</i> . EMBO Journal, 2020, 39, e102246.	7.8	69
17	Regulation of the Peptidoglycan Polymerase Activity of PBP1b by Antagonist Actions of the Core Divisome Proteins FtsBLQ and FtsN. MBio, 2019, 10, .	4.1	75
18	Towards the Native Binding Modes of Antibiotics that Target Lipid II. ChemBioChem, 2019, 20, 1731-1738.	2.6	19

#	Article	IF	CITATIONS
19	Peptidoglycan Remodeling Enables Escherichia coli To Survive Severe Outer Membrane Assembly Defect. MBio, 2019, 10, .	4.1	115
20	Mechanisms of Incorporation for <scp>D</scp> -Amino Acid Probes That Target Peptidoglycan Biosynthesis. ACS Chemical Biology, 2019, 14, 2745-2756.	3.4	101
21	Plasticity of Escherichia coli cell wall metabolism promotes fitness and antibiotic resistance across environmental conditions. ELife, 2019, 8, .	6.0	72
22	Coupling of polymerase and carrier lipid phosphatase prevents product inhibition in peptidoglycan synthesis. Cell Surface, 2018, 2, 1-13.	3.0	23
23	Bacillus subtilis MraY in detergent-free system of nanodiscs wrapped by styrene-maleic acid copolymers. PLoS ONE, 2018, 13, e0206692.	2.5	4
24	Z-ring membrane anchors associate with cell wall synthases to initiate bacterial cell division. Nature Communications, 2018, 9, 5090.	12.8	60
25	High-resolution NMR studies of antibiotics in cellular membranes. Nature Communications, 2018, 9, 3963.	12.8	100
26	The Fluorescent D-Amino Acid NADA as a Tool to Study the Conditional Activity of Transpeptidases in Escherichia coli. Frontiers in Microbiology, 2018, 9, 2101.	3.5	26
27	Induced conformational changes activate the peptidoglycan synthase PBP1B. Molecular Microbiology, 2018, 110, 335-356.	2.5	35
28	Plantaricin NC8 from Lactobacillus plantarum causes cell membrane disruption to Micrococcus luteus without targeting lipid II. Applied Microbiology and Biotechnology, 2018, 102, 7465-7473.	3.6	31
29	Structure of the essential peptidoglycan amidotransferase MurT/GatD complex from Streptococcus pneumoniae. Nature Communications, 2018, 9, 3180.	12.8	34
30	Substitutions in PBP2b from β-Lactam-resistant Streptococcus pneumoniae Have Different Effects on Enzymatic Activity and Drug Reactivity. Journal of Biological Chemistry, 2017, 292, 2854-2865.	3.4	14
31	Defining the molecular structure of teixobactin analogues and understanding their role in antibacterial activities. Chemical Communications, 2017, 53, 2016-2019.	4.1	43
32	Interplay between Penicillin-binding proteins and SEDS proteins promotes bacterial cell wall synthesis. Scientific Reports, 2017, 7, 43306.	3.3	96
33	Teixobactin analogues reveal enduracididine to be non-essential for highly potent antibacterial activity and lipid II binding. Chemical Science, 2017, 8, 8183-8192.	7.4	42
34	<i>De novo</i> identification of lipid II binding lipopeptides with antibacterial activity against vancomycin-resistant bacteria. Chemical Science, 2017, 8, 7991-7997.	7.4	12
35	The Membrane Steps of Bacterial Cell Wall Synthesis as Antibiotic Targets. Antibiotics, 2016, 5, 28.	3.7	81
36	New Insight into the Catalytic Mechanism of Bacterial MraY from Enzyme Kinetics and Docking Studies. Journal of Biological Chemistry, 2016, 291, 15057-15068.	3.4	17

#	Article	IF	CITATIONS
37	Siteâ€&pecific Immobilization of the Peptidoglycan Synthase PBP1B on a Surface Plasmon Resonance Chip Surface. ChemBioChem, 2016, 17, 2250-2256.	2.6	14
38	Subunit Arrangement in GpsB, a Regulator of Cell Wall Biosynthesis. Microbial Drug Resistance, 2016, 22, 446-460.	2.0	26
39	New Insights into Nisin's Antibacterial Mechanism Revealed by Binding Studies with Synthetic Lipid II Analogues. Biochemistry, 2016, 55, 232-237.	2.5	43
40	Site-specific conjugation of single domain antibodies to liposomes enhances photosensitizer uptake and photodynamic therapy efficacy. Nanoscale, 2016, 8, 6490-6494.	5.6	37
41	Total Synthesis of Laspartomycin C and Characterization of Its Antibacterial Mechanism of Action. Journal of Medicinal Chemistry, 2016, 59, 3569-3574.	6.4	42
42	Hit 'em where it hurts: The growing and structurally diverse family of peptides that target lipid-II. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 947-957.	2.6	62
43	Detergent-Free Extraction of the Reaction Center from Rhodobacter sphaeroides into Native Nanodiscs. Nanodisc Size Matters!. Biophysical Journal, 2015, 108, 556a.	0.5	0
44	Development of a liquid chromatography/mass spectrometry assay for the bacterial transglycosylation reaction through measurement of Lipid II. Electrophoresis, 2015, 36, 2841-2849.	2.4	2
45	Enhancing photodynamic therapy of refractory solid cancers: Combining second-generation photosensitizers with multi-targeted liposomal delivery. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2015, 23, 103-131.	11.6	104
46	Activities and regulation of peptidoglycan synthases. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20150031.	4.0	138
47	Positive cooperativity between acceptor and donor sites of the peptidoglycan glycosyltransferase. Biochemical Pharmacology, 2015, 93, 141-150.	4.4	9
48	Molecular Model for the Solubilization of Membranes into Nanodisks by Styrene Maleic Acid Copolymers. Biophysical Journal, 2015, 108, 279-290.	0.5	150
49	Semisynthetic Lipopeptides Derived from Nisin Display Antibacterial Activity and Lipid II Binding on Par with That of the Parent Compound. Journal of the American Chemical Society, 2015, 137, 9382-9389.	13.7	70
50	Synthesis of nisin AB dicarba analogs using ring-closing metathesis: influence of sp ³ versus sp ² hybridization of the α-carbon atom of residues dehydrobutyrine-2 and dehydroalanine-5 on the lipid II binding affinity. Organic and Biomolecular Chemistry, 2015, 13, 5997-6009.	2.8	13
51	Structure–Activity Relationships of Novel Tryptamine-Based Inhibitors of Bacterial Transglycosylase. Journal of Medicinal Chemistry, 2015, 58, 9712-9721.	6.4	21
52	Coordination of peptidoglycan synthesis and outer membrane constriction during Escherichia coli cell division. ELife, 2015, 4, .	6.0	154
53	Antibacterial photodynamic therapy: overview of a promising approach to fight antibiotic-resistant bacterial infections. Journal of Clinical and Translational Research, 2015, 1, 140-167.	0.3	118
54	Outer-membrane lipoprotein LpoB spans the periplasm to stimulate the peptidoglycan synthase PBP1B. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 8197-8202.	7.1	95

#	Article	IF	CITATIONS
55	Specificity of the Transport of Lipid II by FtsW in Escherichia coli. Journal of Biological Chemistry, 2014, 289, 14707-14718.	3.4	67
56	Semi-synthesis of biologically active nisin hybrids composed of the native lanthionine ABC-fragment and a cross-stapled synthetic DE-fragment. Bioorganic and Medicinal Chemistry, 2014, 22, 5345-5353.	3.0	17
57	SITE-SPECIFIC FUNCTIONALIZATION OF PROTEINS AND THEIR APPLICATIONS TO THERAPEUTIC ANTIBODIES. Computational and Structural Biotechnology Journal, 2014, 9, e201402001.	4.1	39
58	A conformationally constrained fused tricyclic nisin AB-ring system mimic toward an improved pyrophosphate binder of lipid II. Tetrahedron, 2014, 70, 7691-7699.	1.9	5
59	Detergent-Free Extraction of Membrane Proteins into Native Nanodiscs. Application to the Reaction center of Rhodobacter Sphaeroides. Biophysical Journal, 2014, 106, 90a.	0.5	0
60	The Chlamydial Anomaly Clarified?. ChemBioChem, 2014, 15, 1391-1392.	2.6	4
61	Towards Detergent Free Solubilization of Membrane Proteins into Nanodiscs: A Biophysical Study on the Interaction between Styrene Maleic Acid (SMA) Copolymers and Synthetic Phospholipid Vesicles. Biophysical Journal, 2013, 104, 597a.	0.5	0
62	Improving the biological activity of the antimicrobial peptide anoplin by membrane anchoring through a lipophilic amino acid derivative. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 3749-3752.	2.2	27
63	Synthesis, Antimicrobial Activity, and Membrane Permeabilizing Properties of C-Terminally Modified Nisin Conjugates Accessed by CuAAC. Bioconjugate Chemistry, 2013, 24, 2058-2066.	3.6	25
64	Fluorescent labeling of nisin Z and assessment of anti-listerial action. Journal of Microbiological Methods, 2013, 95, 107-113.	1.6	15
65	Manipulation of innate immunity by a bacterial secreted peptide: Lantibiotic nisin Z is selectively immunomodulatory. Innate Immunity, 2013, 19, 315-327.	2.4	82
66	Antimicrobial Peptides Produced by Microorganisms. , 2013, , 53-95.		7
67	<i>In vitro</i> Reconstitution of Peptidoglycan Assembly from the Gram-Positive Pathogen <i>Streptococcus pneumoniae</i> . ACS Chemical Biology, 2013, 8, 2688-2696.	3.4	74
68	Turning Defense into Offense: Defensin Mimetics as Novel Antibiotics Targeting Lipid II. PLoS Pathogens, 2013, 9, e1003732.	4.7	50
69	Interaction with Lipid II Induces Conformational Changes in Bovicin HC5 Structure. Antimicrobial Agents and Chemotherapy, 2012, 56, 4586-4593.	3.2	24
70	Polyene antibiotic that inhibits membrane transport proteins. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 11156-11159.	7.1	86
71	Mutual influence of backbone proline substitution and lipophilic tail character on the biological activity of simplified analogues of caspofungin. Organic and Biomolecular Chemistry, 2012, 10, 7491.	2.8	10
72	Calcium-Dependent Complex Formation Between PBP2 and Lytic Transglycosylase SltB1 of <i>Pseudomonas aeruginosa</i> . Microbial Drug Resistance, 2012, 18, 298-305.	2.0	24

#	Article	IF	CITATIONS
73	Enhancing membrane disruption by targeting and multivalent presentation of antimicrobial peptides. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 2171-2174.	2.6	33
74	Toxicity of bovicin HC5 against mammalian cell lines and the role of cholesterol in bacteriocin activity. Microbiology (United Kingdom), 2012, 158, 2851-2858.	1.8	98
75	Enhanced Membrane Pore Formation through High-Affinity Targeted Antimicrobial Peptides. PLoS ONE, 2012, 7, e39768.	2.5	51
76	Synthesis and antifungal properties of papulacandin derivatives. Beilstein Journal of Organic Chemistry, 2012, 8, 732-737.	2.2	30
77	The membrane anchor of penicillinâ€binding protein PBP2a from <i>Streptococcus</i> â€f <i>pneumoniae</i> influences peptidoglycan chain length. FEBS Journal, 2012, 279, 2071-2081.	4.7	25
78	Cooperativity of peptidoglycan synthases active in bacterial cell elongation. Molecular Microbiology, 2012, 85, 179-194.	2.5	147
79	Identification of FtsW as a transporter of lipid-linked cell wall precursors across the membrane. EMBO Journal, 2011, 30, 1425-1432.	7.8	255
80	Reduction of Clostridium sporogenes spore outgrowth in natural sausage casings using nisin. Food Microbiology, 2011, 28, 974-979.	4.2	34
81	Small molecule inhibitors of peptidoglycan synthesis targeting the lipid II precursor. Biochemical Pharmacology, 2011, 81, 1098-1105.	4.4	19
82	Synthesis and evaluation of novel macrocyclic antifungal peptides. Bioorganic and Medicinal Chemistry, 2011, 19, 6505-6517.	3.0	15
83	A Novel in vivo Cellâ€Wall Labeling Approach Sheds New Light on Peptidoglycan Synthesis in <i>Escherichia coli</i> . ChemBioChem, 2011, 12, 1124-1133.	2.6	30
84	Role of Lipid II and Membrane Thickness in the Mechanism of Action of the Lantibiotic Bovicin HC5. Antimicrobial Agents and Chemotherapy, 2011, 55, 5284-5293.	3.2	51
85	Functional interaction of human neutrophil peptideâ€1 with the cell wall precursor lipid II. FEBS Letters, 2010, 584, 1543-1548.	2.8	180
86	Phosphatidylglycerol and daptomycin synergistically inhibit tissue factorâ€induced coagulation in the prothrombin time test. Journal of Thrombosis and Haemostasis, 2010, 8, 1429-1430.	3.8	7
87	Optimization of conditions for the glycosyltransferase activity of penicillinâ€binding protein 1a from <i>Thermotoga maritima</i> . FEBS Journal, 2010, 277, 4290-4298.	4.7	20
88	Natamycin Inhibits Vacuole Fusion at the Priming Phase via a Specific Interaction with Ergosterol. Antimicrobial Agents and Chemotherapy, 2010, 54, 2618-2625.	3.2	80
89	Regulation of Peptidoglycan Synthesis by Outer-Membrane Proteins. Cell, 2010, 143, 1097-1109.	28.9	335

90 Lethal Traffic Jam. Science, 2009, 325, 684-685.

12.6 3

#	Article	IF	CITATIONS
91	Specific Labeling of Peptidoglycan Precursors as a Tool for Bacterial Cell Wall Studies. ChemBioChem, 2009, 10, 617-624.	2.6	28
92	Potential scorpionate antibiotics: Targeted hydrolysis of lipid II containing model membranes by vancomycin–TACzyme conjugates and modulation of their antibacterial activity by Zn-ions. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 3721-3724.	2.2	4
93	A protein-based oxygen biosensor for high-throughput monitoring of cell growth and cell viability. Analytical Biochemistry, 2009, 385, 242-248.	2.4	23
94	Membrane Permeabilization by Multivalent Anti-Microbial Peptides. Protein and Peptide Letters, 2009, 16, 736-742.	0.9	33
95	Alkene/Alkane-Bridged Mimics of the Lantibiotic Nisin: Toward Novel Peptide-Based Antibiotics. Advances in Experimental Medicine and Biology, 2009, 611, 533-534.	1.6	1
96	The Vancomycinâ^'Nisin(1â^'12) Hybrid Restores Activity against Vancomycin Resistant Enterococci. Biochemistry, 2008, 47, 12661-12663.	2.5	82
97	Lipid II: A central component in bacterial cell wall synthesis and a target for antibiotics. Prostaglandins Leukotrienes and Essential Fatty Acids, 2008, 79, 117-121.	2.2	104
98	Elucidation of the Antimicrobial Mechanism of Mutacin 1140. Biochemistry, 2008, 47, 3308-3314.	2.5	71
99	Increased d-alanylation of lipoteichoic acid and a thickened septum are main determinants in the nisin resistance mechanism of Lactococcus lactis. Microbiology (United Kingdom), 2008, 154, 1755-1762.	1.8	55
100	Importance of the Conserved Residues in the Peptidoglycan Glycosyltransferase Module of the Class A Penicillin-binding Protein 1b of Escherichia coli. Journal of Biological Chemistry, 2008, 283, 28464-28470.	3.4	27
101	Natamycin Blocks Fungal Growth by Binding Specifically to Ergosterol without Permeabilizing the Membrane. Journal of Biological Chemistry, 2008, 283, 6393-6401.	3.4	193
102	Molecular Mechanism of Target Recognition by Subtilin, a Class I Lanthionine Antibiotic. Antimicrobial Agents and Chemotherapy, 2008, 52, 612-618.	3.2	88
103	The Monofunctional Glycosyltransferase of <i>Escherichia coli</i> Localizes to the Cell Division Site and Interacts with Penicillin-Binding Protein 3, FtsW, and FtsN. Journal of Bacteriology, 2008, 190, 1831-1834.	2.2	54
104	A Role of Lipophilic Peptidoglycan-related Molecules in Induction of Nod1-mediated Immune Responses. Journal of Biological Chemistry, 2007, 282, 11757-11764.	3.4	45
105	The expanding role of lipid II as a target for lantibiotics. Future Microbiology, 2007, 2, 513-525.	2.0	64
106	The Essential Cell Division Protein FtsN Interacts with the Murein (Peptidoglycan) Synthase PBP1B in Escherichia coli. Journal of Biological Chemistry, 2007, 282, 36394-36402.	3.4	140
107	Enhanced Membrane Pore Formation by Multimeric/Oligomeric Antimicrobial Peptides. Biochemistry, 2007, 46, 13437-13442.	2.5	74
108	Synthesis of Bicyclic Alkene″Alkaneâ€Bridged Nisin Mimics by Ring losing Metathesis and their Biochemical Evaluation as Lipid II Binders: toward the Design of Potential Novel Antibiotics. ChemBioChem, 2007, 8, 1540-1554.	2.6	48

#	Article	IF	CITATIONS
109	Transmembrane transport of peptidoglycan precursors across model and bacterial membranes. Molecular Microbiology, 2007, 64, 1105-1114.	2.5	55
110	Size and Orientation of the Lipid II Headgroup As Revealed by AFM Imagingâ€. Biochemistry, 2006, 45, 6195-6202.	2.5	32
111	An Alternative Bactericidal Mechanism of Action for Lantibiotic Peptides That Target Lipid II. Science, 2006, 313, 1636-1637.	12.6	459
112	Structural Motifs of Lipid II-Binding Lantibiotics as a Blueprint for Novel Antibiotics. Anti-Infective Agents in Medicinal Chemistry, 2006, 5, 245-254.	0.6	5
113	A lesson in efficient killing from two-component lantibiotics. Molecular Microbiology, 2006, 61, 271-273.	2.5	22
114	Lipid II as a target for antibiotics. Nature Reviews Drug Discovery, 2006, 5, 321-323.	46.4	580
115	In Vitro Synthesis of Cross-linked Murein and Its Attachment to Sacculi by PBP1A from Escherichia coli. Journal of Biological Chemistry, 2006, 281, 26985-26993.	3.4	114
116	In Vitro Murein (Peptidoglycan) Synthesis by Dimers of the Bifunctional Transglycosylase-Transpeptidase PBP1B from Escherichia coli. Journal of Biological Chemistry, 2005, 280, 38096-38101.	3.4	135
117	Targeting extracellular pyrophosphates underpins the high selectivity of nisin. FASEB Journal, 2004, 18, 1862-1869.	0.5	77
118	Resistance of Gram-positive bacteria to nisin is not determined by Lipid II levels. FEMS Microbiology Letters, 2004, 239, 157-161.	1.8	95
119	Assembly and Stability of Nisinâ^Lipid II Pores. Biochemistry, 2004, 43, 11567-11575.	2.5	243
120	The nisin–lipid II complex reveals a pyrophosphate cage that provides a blueprint for novel antibiotics. Nature Structural and Molecular Biology, 2004, 11, 963-967.	8.2	505
121	Getting Closer to the Real Bacterial Cell Wall Target: Biomolecular Interactions of Water-Soluble Lipid II with Glycopeptide Antibiotics. Chemistry - A European Journal, 2003, 9, 1556-1565.	3.3	25
122	Lipid II Is an Intrinsic Component of the Pore Induced by Nisin in Bacterial Membranes. Journal of Biological Chemistry, 2003, 278, 19898-19903.	3.4	284
123	Localization of Intramolecular Monosulfide Bridges in Lantibiotics Determined with Electron Capture Induced Dissociation. Analytical Chemistry, 2003, 75, 3219-3225.	6.5	40
124	Membrane Interaction of the Glycosyltransferase MurG: a Special Role for Cardiolipin. Journal of Bacteriology, 2003, 185, 3773-3779.	2.2	88
125	NMR Study of Mersacidin and Lipid II Interaction in Dodecylphosphocholine Micelles. Journal of Biological Chemistry, 2003, 278, 13110-13117.	3.4	113
126	Mapping the Targeted Membrane Pore Formation Mechanism by Solution NMR:Â The Nisin Z and Lipid II Interaction in SDS Micelles. Biochemistry, 2002, 41, 7670-7676.	2.5	68

#	Article	IF	CITATIONS
127	Clavanin Permeabilizes Target Membranes via Two Distinctly Different pH-Dependent Mechanismsâ€. Biochemistry, 2002, 41, 7529-7539.	2.5	53
128	Lipid II Induces a Transmembrane Orientation of the Pore-Forming Peptide Lantibiotic Nisin. Biochemistry, 2002, 41, 12171-12178.	2.5	126
129	Modification and Inhibition of Vancomycin Group Antibiotics by Formaldehyde and Acetaldehyde. Chemistry - A European Journal, 2001, 7, 910-916.	3.3	45
130	Specific Binding of Nisin to the Peptidoglycan Precursor Lipid II Combines Pore Formation and Inhibition of Cell Wall Biosynthesis for Potent Antibiotic Activity. Journal of Biological Chemistry, 2001, 276, 1772-1779.	3.4	636
131	Engineering a disulfide bond and free thiols in the lantibiotic nisin Z. FEBS Journal, 2000, 267, 901-909.	0.2	39
132	Binding of Nisin Z to Bilayer Vesicles As Determined with Isothermal Titration Calorimetry. Biochemistry, 2000, 39, 10247-10254.	2.5	65
133	Use of the Cell Wall Precursor Lipid II by a Pore-Forming Peptide Antibiotic. Science, 1999, 286, 2361-2364.	12.6	720
134	Computational study of nisin interaction with model membrane. Biochimica Et Biophysica Acta - Biomembranes, 1999, 1420, 111-120.	2.6	38
135	The lantibiotic nisin, a special case or not?. Biochimica Et Biophysica Acta - Biomembranes, 1999, 1462, 223-234.	2.6	222
136	Pore Formation by Nisin Involves Translocation of Its C-Terminal Part across the Membraneâ€. Biochemistry, 1998, 37, 16033-16040.	2.5	76
137	The Orientation of Nisin in Membranesâ€. Biochemistry, 1998, 37, 8153-8162.	2.5	116
138	The C-Terminal Region of Nisin Is Responsible for the Initial Interaction of Nisin with the Target Membraneâ€. Biochemistry, 1997, 36, 6968-6976.	2.5	169
139	Inhibition of Preprotein Translocation and Reversion of the Membrane Inserted State of SecA by a Carboxyl Terminus Binding MAb. Biochemistry, 1997, 36, 9159-9168.	2.5	14
140	Influence of Charge Differences in the C-Terminal Part of Nisin on Antimicrobial Activity and Signaling Capacity. FEBS Journal, 1997, 247, 114-120.	0.2	53
141	Influence of the Signal Sequence and Chaperone SecB on the Interaction between Precursor Protein prePhoE and Phospholipids. FEBS Journal, 1996, 235, 207-214.	0.2	7
142	The C Terminus of SecA Is Involved in Both Lipid Binding and SecB Binding. Journal of Biological Chemistry, 1995, 270, 7902-7907.	3.4	145
143	Characterization of a Bacillus subtilis SecA mutant protein deficient in translocation ATPase and release from the membrane. Molecular Microbiology, 1993, 8, 31-42.	2.5	77
144	Nucleotide and negatively charged lipid-dependent vesicle aggregation caused by SecA. FEBS Letters, 1993, 331, 19-24.	2.8	30

#	Article	IF	CITATIONS
145	SecA insertion into phospholipids is stimulated by negatively charged lipids and inhibited by ATP: a monolayer study. Biochemistry, 1992, 31, 1119-1124.	2.5	187
146	In-vitro studies on the folding characteristics of the Escherichia coli precursor protein prePhoE. Evidence that SecB prevents the precursor from aggregating by forming A functional complex. FEBS Journal, 1992, 208, 419-425.	0.2	41