Weizhi Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5894062/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Boosting the down-shifting luminescence of rare-earth nanocrystals for biological imaging beyond 1500 nm. Nature Communications, 2017, 8, 737.	12.8	416
2	In vivo molecular imaging for immunotherapy using ultra-bright near-infrared-IIb rare-earth nanoparticles. Nature Biotechnology, 2019, 37, 1322-1331.	17.5	398
3	Label-Free Quantitative Detection of Tumor-Derived Exosomes through Surface Plasmon Resonance Imaging. Analytical Chemistry, 2014, 86, 8857-8864.	6.5	211
4	Molecular Cancer Imaging in the Second Nearâ€Infrared Window Using a Renalâ€Excreted NIRâ€I Fluorophoreâ€Peptide Probe. Advanced Materials, 2018, 30, e1800106.	21.0	115
5	A novel polychloromethylstyrene coated superparamagnetic surface molecularly imprinted core–shell nanoparticle for bisphenol A. Journal of Materials Chemistry, 2011, 21, 9232.	6.7	90
6	A theranostic agent for cancer therapy and imaging in the second near-infrared window. Nano Research, 2019, 12, 273-279.	10.4	86
7	Developing a Bright NIRâ€II Fluorophore with Fast Renal Excretion and Its Application in Molecular Imaging of Immune Checkpoint PD‣1. Advanced Functional Materials, 2018, 28, 1804956.	14.9	85
8	Targeting Peptideâ€Based Probes for Molecular Imaging and Diagnosis. Advanced Materials, 2019, 31, e1804827.	21.0	68
9	Deep learning for in vivo near-infrared imaging. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	53
10	Superparamagnetic surface molecularly imprinted nanoparticles for water-soluble pefloxacin mesylate prepared via surface initiated atom transfer radical polymerization and its application in egg sample analysis. Journal of Chromatography A, 2012, 1246, 15-21.	3.7	52
11	Tumor-microenvironment controlled nanomicelles with AIE property for boosting cancer therapy and apoptosis monitoring. Biomaterials, 2019, 188, 96-106.	11.4	48
12	Quantitative Liver-Specific Protein Fingerprint in Blood: A Signature for Hepatotoxicity. Theranostics, 2014, 4, 215-228.	10.0	47
13	Microarray Based Screening of Peptide Nano Probes for HER2 Positive Tumor. Analytical Chemistry, 2015, 87, 8367-8372.	6.5	45
14	HER2 Targeting Peptides Screening and Applications in Tumor Imaging and Drug Delivery. Theranostics, 2016, 6, 1261-1273.	10.0	45
15	Rapid Screening of Peptide Probes through <i>In Situ</i> Single-Bead Sequencing Microarray. Analytical Chemistry, 2014, 86, 11854-11859.	6.5	40
16	Switchable Liposomes: Targeting-Peptide-Functionalized and pH-Triggered Cytoplasmic Delivery. ACS Applied Materials & Interfaces, 2016, 8, 18658-18663.	8.0	37
17	MMP-2-Controlled Transforming Micelles for Heterogeneic Targeting and Programmable Cancer Therapy. Theranostics, 2019, 9, 1728-1740.	10.0	37
18	Structure-based Design of Peptides with High Affinity and Specificity to HER2 Positive Tumors. Theranostics, 2015, 5, 1154-1165.	10.0	34

WEIZHI WANG

#	Article	IF	CITATIONS
19	pH-Triggered Peptide Self-Assembly for Targeting Imaging and Therapy toward Angiogenesis with Enhanced Signals. ACS Applied Materials & Interfaces, 2018, 10, 7871-7881.	8.0	33
20	Integrated SPPS on continuous-flow radial microfluidic chip. Lab on A Chip, 2011, 11, 929.	6.0	31
21	Bimodal Imprint Chips for Peptide Screening: Integration of High-Throughput Sequencing by MS and Affinity Analyses by Surface Plasmon Resonance Imaging. Analytical Chemistry, 2014, 86, 3703-3707.	6.5	27
22	Peptide-Derived Biosensors and Their Applications in Tumor Immunology-Related Detection. Analytical Chemistry, 2022, 94, 431-441.	6.5	27
23	Synergetic estrogen receptor-targeting liposome nanocarriers with anti-phagocytic properties for enhanced tumor theranostics. Journal of Materials Chemistry B, 2019, 7, 1056-1063.	5.8	25
24	An automated Teflon microfluidic peptide synthesizer. Lab on A Chip, 2013, 13, 3347.	6.0	24
25	Switchable probes: pH-triggered and VEGFR2 targeted peptides screening through imprinting microarray. Chemical Communications, 2016, 52, 5690-5693.	4.1	18
26	Advances in aptamers against Aβ and applications in Aβ detection and regulation for Alzheimer's disease. Theranostics, 2022, 12, 2095-2114.	10.0	18
27	Micromixer Based Preparation of Functionalized Liposomes and Targeting Drug Delivery. ACS Medicinal Chemistry Letters, 2016, 7, 429-434.	2.8	17
28	Tumor Microenvironment-Responsive Theranostic Nanoplatform for in Situ Self-Boosting Combined Phototherapy through Intracellular Reassembly. ACS Applied Materials & Interfaces, 2020, 12, 6966-6977.	8.0	17
29	Discovering of Tumorâ€ŧargeting Peptides using Biâ€functional Microarray. Advanced Healthcare Materials, 2015, 4, 2802-2808.	7.6	14
30	Label-free detection microarray for novel peptide ligands screening base on MS–SPRi combination. Talanta, 2015, 134, 705-711.	5.5	13
31	Synergetic Tumor Probes for Facilitating Therapeutic Delivery by Combined-Functionalized Peptide Ligands. Analytical Chemistry, 2020, 92, 5650-5655.	6.5	13
32	Peptide functionalized targeting liposomes: for nanoscale drug delivery towards angiogenesis. Journal of Materials Chemistry B, 2016, 4, 7087-7091.	5.8	12
33	Targeting peptide functionalized liposomes towards aminopeptidase N for precise tumor diagnosis and therapy. Biomaterials Science, 2017, 5, 417-421.	5.4	12
34	Peptide-Based Nanomaterials for Tumor Immunotherapy. Molecules, 2021, 26, 132.	3.8	12
35	Boosting the Theranostic Effect of Liposomal Probes toward Prominin-1 through Optimized Dual-Site Targeting. Analytical Chemistry, 2019, 91, 7245-7253.	6.5	11
36	Harnessing the PD-L1 interface peptide for positron emission tomography imaging of the PD-1 immune checkpoint. RSC Chemical Biology, 2020, 1, 214-224.	4.1	11

WEIZHI WANG

#	Article	IF	CITATIONS
37	A novel PD-L1 targeting peptide self-assembled nanofibers for sensitive tumor imaging and photothermal immunotherapy in vivo. Nano Research, 2022, 15, 7286-7294.	10.4	11
38	A tetra-layer microfluidic system for peptide affinity screening through integrated sample injection. Analyst, The, 2013, 138, 2890.	3.5	10
39	Multi-stage responsive peptide nanosensor: Anchoring EMT and mitochondria with enhanced fluorescence and boosting tumor apoptosis. Biosensors and Bioelectronics, 2021, 184, 113235.	10.1	10
40	Dynamic interaction between melamine and cyanuric acid in artificial urine investigated by quartz crystal microbalance. Analyst, The, 2011, 136, 2482.	3.5	8
41	Living-System-Driven Evolution of Self-Assembled-Peptide Probes: For Boosting Glioma Theranostics. Analytical Chemistry, 2021, 93, 8035-8044.	6.5	8
42	Distinguishing of tumor cell-targeting peptide ligands through a color-encoding microarray. Lab on A Chip, 2015, 15, 4512-4516.	6.0	6
43	Development of a Stable Peptide-Based PET Tracer for Detecting CD133-Expressing Cancer Cells. ACS Omega, 2022, 7, 334-341.	3.5	6
44	A continuous flow microfluidic-MS system for efficient OBOC screening. RSC Advances, 2014, 4, 61767-61770.	3.6	4
45	Tumor Diagnosis: Discovering of Tumor-targeting Peptides using Bi-functional Microarray (Adv.) Tj ETQq1 1 0.784	1314 rgBT 7.6	/Qverlock 1
46	High-Throughput Peptide Screening on a Bimodal Imprinting Chip Through MS-SPRi Integration. Methods in Molecular Biology, 2016, 1352, 111-125.	0.9	2
47	Progress of new strategies on screening of targeting peptides and applications in tumor immunotherapy. Scientia Sinica Chimica, 2020, 50, 1132-1141.	0.4	1
48	Screened α-Helix Peptide Inhibitor toward SARS-CoV-2 by Blocking a Prion-like Domain in the Receptor Binding Domain. Analytical Chemistry, 2022, 94, 11464-11469.	6.5	1