Stephanie Padilla

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5894018/publications.pdf Version: 2024-02-01

STEDHANIE DADILLA

#	Article	IF	CITATIONS
1	Update on EPA's ToxCast Program: Providing High Throughput Decision Support Tools for Chemical Risk Management. Chemical Research in Toxicology, 2012, 25, 1287-1302.	1.7	410
2	Locomotion in larval zebrafish: Influence of time of day, lighting and ethanol. NeuroToxicology, 2009, 30, 52-58.	1.4	362
3	Common Mechanism of Toxicity: A Case Study of Organophosphorus Pesticides. Toxicological Sciences, 1998, 41, 8-20.	1.4	344
4	Zebrafish developmental screening of the ToxCastâ,,¢ Phase I chemical library. Reproductive Toxicology, 2012, 33, 174-187.	1.3	267
5	Cellular Mechanisms for Developmental Toxicity of Chlorpyrifos: Targeting the Adenylyl Cyclase Signaling Cascade. Toxicology and Applied Pharmacology, 1997, 145, 158-174.	1.3	240
6	Zebrafish—As an integrative model for twentyâ€first century toxicity testing. Birth Defects Research Part C: Embryo Today Reviews, 2011, 93, 256-267.	3.6	237
7	Acute neuroactive drug exposures alter locomotor activity in larval zebrafish. Neurotoxicology and Teratology, 2010, 32, 84-90.	1.2	236
8	The Next Generation Blueprint of Computational Toxicology at the U.S. Environmental Protection Agency. Toxicological Sciences, 2019, 169, 317-332.	1.4	225
9	Age- and Gender-Related Differences in the Time Course of Behavioral and Biochemical Effects Produced by Oral Chlorpyrifos in Rats. Toxicology and Applied Pharmacology, 1998, 149, 107-119.	1.3	182
10	Assessing locomotor activity in larval zebrafish: Influence of extrinsic and intrinsic variables. Neurotoxicology and Teratology, 2011, 33, 624-630.	1.2	177
11	Use of alternative assays to identify and prioritize organophosphorus flame retardants for potential developmental and neurotoxicity. Neurotoxicology and Teratology, 2015, 52, 181-193.	1.2	159
12	Silver nanoparticles alter zebrafish development and larval behavior: Distinct roles for particle size, coating and composition. Neurotoxicology and Teratology, 2011, 33, 708-714.	1.2	147
13	Acute and developmental behavioral effects of flame retardants and related chemicals in zebrafish. Neurotoxicology and Teratology, 2015, 52, 194-209.	1.2	146
14	Common Mechanism of Toxicity: A Case Study of Organophosphorus Pesticides,. Toxicological Sciences, 1998, 41, 8-20.	1.4	145
15	Age- and Gender-Related Differences in Sensitivity to Chlorpyrifos in the Rat Reflect Developmental Profiles of Esterase Activities. Toxicological Sciences, 1998, 46, 211-222.	1.4	144
16	Acute administration of dopaminergic drugs has differential effects on locomotion in larval zebrafish. Pharmacology Biochemistry and Behavior, 2013, 103, 792-813.	1.3	136
17	Tissue-Specific Effects of Chlorpyrifos on Carboxylesterase and Cholinesterase Activity in Adult Rats: Anin Vitroandin VivoComparison. Fundamental and Applied Toxicology, 1997, 38, 148-157.	1.9	133
18	Developmental Exposure to Organophosphate Flame Retardants Elicits Overt Toxicity and Alters Behavior in Early Life Stage Zebrafish (<i>Danio rerio</i>). Toxicological Sciences, 2014, 142, 445-454.	1.4	133

#	Article	IF	CITATIONS
19	Gene expression changes in developing zebrafish as potential markers for rapid developmental neurotoxicity screening. Neurotoxicology and Teratology, 2010, 32, 91-98.	1.2	129
20	Maturational differences in chlorpyrifos-oxonase activity may contribute to age-related sensitivity to chlorpyrifos. Journal of Biochemical Toxicology, 1996, 11, 279-287.	0.5	119
21	Developmental neurotoxicity of chlorpyrifos: what is the vulnerable period?. Environmental Health Perspectives, 2002, 110, 1097-1103.	2.8	116
22	Characterization of deltamethrin metabolism by rat plasma and liver microsomes. Toxicology and Applied Pharmacology, 2006, 212, 156-166.	1.3	103
23	Advancing the science of developmental neurotoxicity (DNT): testing for better safety evaluation. ALTEX: Alternatives To Animal Experimentation, 2012, 29, 202-215.	0.9	101
24	Reference compounds for alternative test methods to indicate developmental neurotoxicity (DNT) potential of chemicals: example lists and criteria for their selection and use. ALTEX: Alternatives To Animal Experimentation, 2017, 34, 49-74.	0.9	94
25	The Relationship of Oral Chlorpyrifos Effects on Behavior, Cholinesterase Inhibition, and Muscarinic Receptor Density in Rat. Pharmacology Biochemistry and Behavior, 1997, 58, 15-23.	1.3	93
26	A Tiered Approach to Systemic Toxicity Testing for Agricultural Chemical Safety Assessment. Critical Reviews in Toxicology, 2006, 36, 37-68.	1.9	92
27	Comparison of thein VitroSensitivity of Rat Acetylcholinesterase to Chlorpyrifos-oxon: What Do Tissue IC50 Values Represent?. Toxicology and Applied Pharmacology, 1998, 148, 46-49.	1.3	90
28	Potentiation of organophosphorusâ€induced delayed neurotoxicity by phenylmethylsulfonyl fluoride. Journal of Toxicology and Environmental Health - Part A: Current Issues, 1990, 31, 261-273.	1.1	87
29	ONTOGENY OF HEPATIC AND PLASMA METABOLISM OF DELTAMETHRIN IN VITRO: ROLE IN AGE-DEPENDENT ACUTE NEUROTOXICITY. Drug Metabolism and Disposition, 2006, 34, 389-397.	1.7	86
30	The Impact of Dose Rate on the Neurotoxicity of Acrylamide: The Interaction of Administered Dose, Target Tissue Concentrations, Tissue Damage, and Functional Effects. Toxicology and Applied Pharmacology, 1996, 139, 163-176.	1.3	84
31	Gestational Exposure to Chlorpyrifos: Apparent Protection of the Fetus?. Toxicology and Applied Pharmacology, 1998, 152, 56-65.	1.3	83
32	Adverse Outcome Pathways during Early Fish Development: A Conceptual Framework for Identification of Chemical Screening and Prioritization Strategies. Toxicological Sciences, 2011, 123, 349-358.	1.4	79
33	A Modified Spectrophotometric Method Appropriate for Measuring Cholinesterase Activity in Tissue from Carbaryl-Treated Animals. Fundamental and Applied Toxicology, 1993, 21, 196-203.	1.9	77
34	Rat brain acetylcholinesterase activity: developmental profile and maturational sensitivity to carbamate and organophosphorus inhibitors. Toxicology, 1998, 125, 13-19.	2.0	73
35	Expanding the test set: Chemicals with potential to disrupt mammalian brain development. Neurotoxicology and Teratology, 2015, 52, 25-35.	1.2	73
36	Age- and Gender-Related Differences in Sensitivity to Chlorpyrifos in the Rat Reflect Developmental Profiles of Esterase Activities. Toxicological Sciences, 1998, 46, 211-222.	1.4	62

#	Article	IF	CITATIONS
37	Studies on the correlation between blood cholinesterase inhibition and â€~target tissue' inhibition in pesticide-treated rats. Toxicology, 1994, 92, 11-25.	2.0	58
38	The relationship between neurological damage and neurotoxic esterase inhibition in rats acutely exposed to tri-ortho-cresyl phosphate. Toxicology and Applied Pharmacology, 1985, 78, 78-87.	1.3	55
39	Evaluating the zebrafish embryo toxicity test for pesticide hazard screening. Environmental Toxicology and Chemistry, 2017, 36, 1221-1226.	2.2	54
40	Murine susceptibility to organophosphorus-induced delayed neuropathy (OPIDN). Toxicology and Applied Pharmacology, 1991, 107, 311-324.	1.3	52
41	Developmental exposure to valproate and ethanol alters locomotor activity and retino-tectal projection area in zebrafish embryos. Reproductive Toxicology, 2012, 33, 165-173.	1.3	52
42	Use of Medaka in Toxicity Testing. Current Protocols in Toxicology / Editorial Board, Mahin D Maines (editor-in-chief) [et Al], 2009, 39, Unit1.10.	1.1	49
43	Advancing toxicology research using in vivo high throughput toxicology with small fish models. ALTEX: Alternatives To Animal Experimentation, 2016, 33, 435-452.	0.9	48
44	Regulatory and research issues related to cholinesterase inhibition. Toxicology, 1995, 102, 215-220.	2.0	45
45	Neurobehavioral Effects of Chronic Dietary and Repeated High-Level Spike Exposure to Chlorpyrifos in Rats. Toxicological Sciences, 2005, 86, 375-386.	1.4	44
46	Ontogenetic differences in the regional and cellular acetylcholinesterase and butyrylcholinesterase activity in the rat brain. Developmental Brain Research, 1998, 105, 109-123.	2.1	42
47	Gestational Exposure to Chlorpyrifos: Comparative Distribution of Trichloropyridinol in the Fetus and Dam. Toxicology and Applied Pharmacology, 1999, 158, 16-23.	1.3	42
48	Rearing conditions differentially affect the locomotor behavior of larval zebrafish, but not their response to valproate-induced developmental neurotoxicity. Neurotoxicology and Teratology, 2011, 33, 674-679.	1.2	42
49	FACTORS IN STANDARDIZING AUTOMATED CHOLINESTERASE ASSAYS. Journal of Toxicology and Environmental Health - Part A: Current Issues, 1996, 48, 187-196.	1.1	41
50	The role of neurotoxic esterase (NTE) in the prevention and potentiation of organophosphorus-induced delayed neurotoxicity (OPIDN). Chemico-Biological Interactions, 1993, 87, 395-406.	1.7	40
51	Effects of organophosphates on the visual system of rats. Journal of Applied Toxicology, 1994, 14, 135-143.	1.4	38
52	Adapting the medaka embryo assay to a high-throughput approach for developmental toxicity testing. NeuroToxicology, 2006, 27, 840-845.	1.4	38
53	An in vitro comparison of rat and chicken brain neurotoxic esterase. Fundamental and Applied Toxicology, 1986, 6, 464-471.	1.9	37
54	Slow accumulation of acetylcholinesterase in rat brain during enzyme inhibition by repeated dosing with chlorpyrifos. Biochemical Pharmacology, 1995, 49, 955-963.	2.0	37

#	Article	IF	CITATIONS
55	Automated measurement of acetylcholinesterase activity in rat peripheral tissues. Toxicology, 2003, 186, 241-253.	2.0	37
56	Time course of cholinesterase inhibition in adult rats treated acutely with carbaryl, carbofuran, formetanate, methomyl, methiocarb, oxamyl or propoxur. Toxicology and Applied Pharmacology, 2007, 219, 202-209.	1.3	37
57	Chromatographic characterization of neurotoxic esterase. Biochemical Pharmacology, 1989, 38, 181-188.	2.0	36
58	Screening for angiogenic inhibitors in zebrafish to evaluate a predictive model for developmental vascular toxicity. Reproductive Toxicology, 2017, 70, 70-81.	1.3	36
59	Phenylmethylsulfonyl fluoride protects rats from Mipafox-induced delayed neuropathy. Toxicology and Applied Pharmacology, 1985, 81, 258-264.	1.3	34
60	Neurochemical Effects of Chronic Dietary and Repeated High-Level Acute Exposure to Chlorpyrifos in Rats. Toxicological Sciences, 2005, 88, 161-171.	1.4	34
61	Comparison of the Relative Inhibition of Acetylcholinesterase and Neuropathy Target Esterase in Rats and Hens Given Cholinesterase Inhibitors. Fundamental and Applied Toxicology, 1995, 24, 94-101.	1.9	32
62	Fenthion Produces a Persistent Decrease in Muscarinic Receptor Function in the Adult Rat Retina. Toxicology and Applied Pharmacology, 1994, 125, 271-280.	1.3	31
63	Triphenyl phosphite: In vivo and in vitro inhibition of rat neurotoxic esterase. Toxicology and Applied Pharmacology, 1987, 87, 249-256.	1.3	29
64	Measuring Cholinesterase Activity in Human Saliva. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2006, 69, 1805-1818.	1.1	29
65	Comparison of Acute Neurobehavioral and Cholinesterase Inhibitory Effects of N-Methylcarbamates in Rat. Toxicological Sciences, 2007, 98, 552-560.	1.4	29
66	Biochemical and neuropathological assessment of triphenyl phosphite in rats. Toxicology and Applied Pharmacology, 1986, 83, 203-210.	1.3	28
67	FURTHER ASSESSMENT OF ANIN VITROSCREEN THAT MAY HELP IDENTIFY ORGANOPHOSPHORUS PESTICIDES THAT ARE MORE ACUTELY TOXIC TO THE YOUNG. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2004, 67, 1477-1489.	1.1	27
68	Impact of Chemical Proportions on the Acute Neurotoxicity of a Mixture of Seven Carbamates in Preweanling and Adult Rats. Toxicological Sciences, 2012, 129, 126-134.	1.4	27
69	High-Throughput Video Processing of Heart Rate Responses in Multiple Wild-type Embryonic Zebrafish per Imaging Field. Scientific Reports, 2019, 9, 145.	1.6	27
70	Body temperature-dependent and independent actions of chlordimeform on visual evoked potentials and axonal transport in optic system of rat. Neuropharmacology, 1985, 24, 743-749.	2.0	26
71	Vulnerable windows for developmental ethanol toxicity in the Japanese medaka fish (Oryzias latipes). Aquatic Toxicology, 2006, 80, 396-404.	1.9	24
72	Immediate and long-term consequences of vascular toxicity during zebrafish development. Reproductive Toxicology, 2014, 48, 51-61.	1.3	24

#	Article	IF	CITATIONS
73	Modulation of neurotoxic esterase activity in vitro by phospholipids. Toxicology and Applied Pharmacology, 1989, 97, 272-278.	1.3	23
74	Evaluation of Candidate Genes for Cholinesterase Activity in Farmworkers Exposed to Organophosphorus Pesticides: Association of Single Nucleotide Polymorphisms in <i>BCHE</i> . Environmental Health Perspectives, 2010, 118, 1395-1399.	2.8	23
75	Tissue Carboxylesterases and Chlorpyrifos Toxicity in the Developing Rat. Human and Ecological Risk Assessment (HERA), 2002, 8, 75-90.	1.7	22
76	Paraoxon toxicity is not potentiated by prior reduction in blood acetylcholinesterase. Toxicology and Applied Pharmacology, 1992, 117, 110-115.	1.3	19
77	Altered expression of pp60c-src induced by peripheral nerve injury. Journal of Comparative Neurology, 1992, 315, 171-177.	0.9	18
78	Determination of acrylamide in rat serum and sciatic nerve by gas chromatography-electron-capture detection. Biomedical Applications, 1993, 619, 223-234.	1.7	18
79	Quantitative, Video-Based Histochemistry to Measure Regional Effects of Anticholinesterase Pesticides in Rat Brain. Analytical Biochemistry, 1996, 241, 82-92.	1.1	18
80	Comparison of proteins transported in different tracts of the central nervous system. Brain Research, 1979, 176, 407-411.	1.1	17
81	Biochemical and Morphological Validation of a Rodent Model of Organophosphorus-Induced Delayed Neuropathy. Toxicology and Industrial Health, 1988, 4, 361-371.	0.6	17
82	Inhibition of Rat Brain Phosphatidylinositol-Specific Phospholipase C by Aluminum: Regional Differences, Interactions with Aluminum Salts, and Mechanisms. Toxicology and Applied Pharmacology, 1996, 136, 118-125.	1.3	15
83	Zebrafish Locomotor Responses Reveal Irritant Effects of Fine Particulate Matter Extracts and a Role for TRPA1. Toxicological Sciences, 2018, 161, 290-299.	1.4	15
84	Biochemical Measurement of Cholinesterase Activity. , 1999, 22, 237-246.		14
85	Relationship between brain and plasma carbaryl levels and cholinesterase inhibition. Toxicology, 2010, 276, 172-183.	2.0	14
86	Esterase metabolism of cholinesterase inhibitors using rat liver in vitroã~†. Toxicology, 2011, 281, 56-62.	2.0	14
87	INFLUENCE OF STORAGE CONDITIONS ON THE STABILITY OF CHOLINESTERASE ACTIVITY IN PLASMA AND BRAIN TISSUE TAKEN FROM CARBAMATE OR ORGANOPHOSPHORUS PESTICIDE-TREATED RATS. , 1999, 9, 189-199.		12
88	Axonal Transport of [35S]Methionine-Labeled Proteins in Two Intra-Brain Tracts of the Rat. Journal of Neurochemistry, 1980, 35, 436-443.	2.1	11
89	Axonal Transport of [3H]Fucose-Labeled Clycoproteins in Two Intra-Brain Tracts of the Rat. Journal of Neurochemistry, 1980, 35, 444-450.	2.1	11
90	The Neurotoxicity of Cholinesterase-Inhibiting Insecticides: Past and Present Evidence Demonstrating Persistent Effects. Inhalation Toxicology, 1995, 7, 903-907.	0.8	10

#	Article	IF	CITATIONS
91	Effects of p-xylene inhalation on axonal transport in the rat retinal ganglion cells. Toxicology and Applied Pharmacology, 1989, 101, 390-398.	1.3	9
92	Retrograde Axonal Transport of Locally Synthesized Phosphoinositides in the Rat Sciatic Nerve. Journal of Neurochemistry, 1991, 57, 415-422.	2.1	9
93	Effects of Hypothermia on the In Vivo Measurement of Rapid Axonal Transport in the Rat: A Cautionary Note. Journal of Neurochemistry, 1986, 46, 1227-1230.	2.1	8
94	Relationship of neuropathy target esterase inhibition to neuropathology and ataxia in hens given organophosphorus esters. Chemico-Biological Interactions, 1993, 87, 431-437.	1.7	8
95	Subacute ethanol consumption reverses p-xylene-induced decreases in axonal transport. Toxicology, 1992, 75, 159-167.	2.0	7
96	Toxic Responses of the Fish Nervous System. , 2008, , 417-455.		7
97	Esterase detoxication of acetylcholinesterase inhibitors using human liver samples in vitro. Toxicology, 2016, 353-354, 11-20.	2.0	7
98	Developmental Neurotoxicity and Behavioral Screening in Larval Zebrafish with a Comparison to Other Published Results. Toxics, 2022, 10, 256.	1.6	7
99	Axonal transport of glycerophospholipids following intracerebral injection of glycerol into substantia nigra or lateral geniculate body. Neurochemical Research, 1980, 5, 1175-1183.	1.6	6
100	Methods to Identify and Characterize Developmental Neurotoxicity for Human Health Risk Assessment. III: Pharmacokinetic and Pharmacodynamic Considerations. Environmental Health Perspectives, 2001, 109, 101.	2.8	6
101	Letter to the editor. Toxicology and Applied Pharmacology, 1991, 110, 179-180.	1.3	5
102	Locally Synthesized Phosphatidylcholine, but Not Protein, Undergoes Rapid Retrograde Axonal Transport in the Rat Sciatic Nerve. Journal of Neurochemistry, 1993, 60, 1900-1905.	2.1	5
103	Developmental changes in carbachol-stimulated inositolphosphate release in pigmented rat retina. Current Eye Research, 1993, 12, 439-449.	0.7	5
104	Direct measurement of fast axonal organelle transport in the sciatic nerve of rats treated with acrylamide. Journal of Toxicology and Environmental Health - Part A: Current Issues, 1993, 39, 429-445.	1.1	5
105	A Dried Blood Spot Method to Evaluate Cholinesterase Activity in Young Children. Archives of Environmental Health, 2004, 59, 467-470.	0.4	5
106	THE DYNAMICS OF SUCCESSIVE INDUCTION IN LARVAL ZEBRAFISH. Journal of the Experimental Analysis of Behavior, 2010, 94, 261-266.	0.8	5
107	Development of a quantitative morphological assessment of toxicantâ€treated zebrafish larvae using brightfield imaging and highâ€content analysis. Journal of Applied Toxicology, 2016, 36, 1214-1222.	1.4	5

108 Using Zebrafish to Assess Developmental Neurotoxicity. , 2017, , 289-301.

5

#	Article	IF	CITATIONS
109	The utility of alternative models in particulate matter air pollution toxicology. Current Research in Toxicology, 2022, 3, 100077.	1.3	5
110	Generation and characterization of neurogenin1-GFP transgenic medaka with potential for rapid developmental neurotoxicity screening. Aquatic Toxicology, 2011, 105, 127-135.	1.9	4
111	Implementation of Zebrafish Ontologies for Toxicology Screening. Frontiers in Toxicology, 2022, 4, 817999.	1.6	4
112	Comparison of the Relative Inhibition of Acetylcholinesterase and Neuropathy Target Esterase in Rats and Hens Given Cholinesterase Inhibitors. Toxicological Sciences, 1995, 24, 94-101.	1.4	3
113	Cumulative Effects of Organophosphorus or Carbamate Pesticides. , 2006, , 607-615.		3
114	The zebrafish (Danio rerio) model in toxicity testing. , 2020, , 525-532.		3
115	Rodent Models of Organophosphorus-Induced Delayed Neuropathy. , 1992, , 353-366.		3
116	A Novel Method that Markedly Increases the Sensitivity of the Erythrocyte Acetylcholinesterase Assay, Suitable for use in Pesticide-Treated Rats. , 1995, 5, 41-49.		2
117	Biomarkers of toxicity in zebrafish. , 2014, , 103-112.		2
118	Assessment of Larval Locomotor Activity for Developmental Neurotoxicity Screening. Neuromethods, 2021, , 327-351.	0.2	2
119	Letter to the Editor. Toxicological Sciences, 2007, 98, 604-604.	1.4	1
120	Using zebrafish to assess developmental neurotoxicity. , 2011, , 179-191.		1
121	An in Vitro Comparison of Rat and Chicken Brain Neurotoxic Esterase. Toxicological Sciences, 1986, 6, 464-471.	1.4	0
122	Biochemical Approaches to Studying Neurotoxicity. Current Protocols in Toxicology / Editorial Board, Mahin D Maines (editor-in-chief) [et Al], 2000, 3, Unit12.1.	1.1	0
123	Using zebrafish to assess developmental neurotoxicity. , 2022, , 239-251.		0