Simon Bekker-Jensen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5893157/publications.pdf

Version: 2024-02-01

46918 110170 11,565 65 47 64 citations h-index g-index papers 66 66 66 13752 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Meeting Report: Aging Research and Drug Discovery. Aging, 2022, 14, 530-543.	1.4	4
2	Regulation of the Golgi Apparatus by p38 and JNK Kinases during Cellular Stress Responses. International Journal of Molecular Sciences, 2021, 22, 9595.	1.8	6
3	Spatial-proteomics reveals phospho-signaling dynamics at subcellular resolution. Nature Communications, 2021, 12, 7113.	5.8	38
4	Ribosomal stress-surveillance: three pathways is a magic number. Nucleic Acids Research, 2020, 48, 10648-10661.	6.5	82
5	ZAKα Recognizes Stalled Ribosomes through Partially Redundant Sensor Domains. Molecular Cell, 2020, 78, 700-713.e7.	4.5	90
6	Selective autophagy maintains centrosome integrity and accurate mitosis by turnover of centriolar satellites. Nature Communications, 2019, 10, 4176.	5 . 8	61
7	Alternative Translation Initiation Generates a Functionally Distinct Isoform of the Stress-Activated Protein Kinase MK2. Cell Reports, 2019, 27, 2859-2870.e6.	2.9	22
8	Protein Aggregation Capture on Microparticles Enables Multipurpose Proteomics Sample Preparation*. Molecular and Cellular Proteomics, 2019, 18, 1027a-1035.	2. 5	189
9	GIGYF1/2-Driven Cooperation between ZNF598 and TTP in Posttranscriptional Regulation of Inflammatory Signaling. Cell Reports, 2019, 26, 3511-3521.e4.	2.9	44
10	p38-MK2 signaling axis regulates RNA metabolism after UV-light-induced DNA damage. Nature Communications, 2018, 9, 1017.	5 . 8	61
11	Osmotic Stress Blocks Mobility and Dynamic Regulation of Centriolar Satellites. Cells, 2018, 7, 65.	1.8	5
12	Regulation of DNA double-strand break repair by ubiquitin and ubiquitin-like modifiers. Nature Reviews Molecular Cell Biology, 2016, 17, 379-394.	16.1	285
13	Structural Analysis of a Complex between Small Ubiquitin-like Modifier 1 (SUMO1) and the ZZ Domain of CREB-binding Protein (CBP/p300) Reveals a New Interaction Surface on SUMO. Journal of Biological Chemistry, 2016, 291, 12658-12672.	1.6	23
14	Activation of the ATR kinase by the RPA-binding protein ETAA1. Nature Cell Biology, 2016, 18, 1196-1207.	4.6	208
15	SCAI promotes DNA double-strand break repair in distinct chromosomal contexts. Nature Cell Biology, 2016, 18, 1357-1366.	4.6	32
16	H4K20me0 marks post-replicative chromatin and recruits the TONSL–MMS22L DNA repair complex. Nature, 2016, 534, 714-718.	13.7	172
17	TRAIP is a PCNA-binding ubiquitin ligase that protects genome stability after replication stress. Journal of Cell Biology, 2016, 212, 63-75.	2.3	65
18	SDCCAG8 Interacts with RAB Effector Proteins RABEP2 and ERC1 and Is Required for Hedgehog Signaling. PLoS ONE, 2016, 11, e0156081.	1.1	19

#	Article	IF	CITATIONS
19	Lamin A/C-dependent interaction with 53BP1 promotes cellular responses to DNA damage. Aging Cell, 2015, 14, 162-169.	3.0	58
20	Ubiquitinâ€like protein <scp>UBL</scp> 5 promotes the functional integrity of the Fanconi anemia pathway. EMBO Journal, 2015, 34, 1385-1398.	3.5	16
21	p38- and MK2-dependent signalling promotes stress-induced centriolar satellite remodelling via 14-3-3-dependent sequestration of CEP131/AZI1. Nature Communications, 2015, 6, 10075.	5.8	40
22	Ubiquitin-SUMO Circuitry Controls Activated Fanconi Anemia ID Complex Dosage in Response to DNA Damage. Molecular Cell, 2015, 57, 150-164.	4.5	106
23	Proteomics reveals dynamic assembly of repair complexes during bypass of DNA cross-links. Science, 2015, 348, 1253671.	6.0	183
24	Histone H1 couples initiation and amplification of ubiquitin signalling after DNA damage. Nature, 2015, 527, 389-393.	13.7	317
25	RNF138 joins the HR team. Nature Cell Biology, 2015, 17, 1375-1377.	4.6	7
26	Proteome-wide analysis of SUMO2 targets in response to pathological DNA replication stress in human cells. DNA Repair, 2015, 25, 84-96.	1.3	30
27	Centriolar satellites: key mediators of centrosome functions. Cellular and Molecular Life Sciences, 2015, 72, 11-23.	2.4	92
28	UBL5 is essential for preâ€ <scp>mRNA</scp> splicing and sister chromatid cohesion in human cells. EMBO Reports, 2014, 15, 956-964.	2.0	41
29	Renal-Retinal Ciliopathy Gene Sdccag8 Regulates DNA Damage Response Signaling. Journal of the American Society of Nephrology: JASN, 2014, 25, 2573-2583.	3.0	63
30	ATR Prohibits Replication Catastrophe by Preventing Global Exhaustion of RPA. Cell, 2013, 155, 1088-1103.	13.5	714
31	OTULIN Restricts Met1-Linked Ubiquitination to Control Innate Immune Signaling. Molecular Cell, 2013, 50, 818-830.	4.5	209
32	Regulation of PCNA–protein interactions for genome stability. Nature Reviews Molecular Cell Biology, 2013, 14, 269-282.	16.1	308
33	A new cellular stress response that triggers centriolar satellite reorganization and ciliogenesis. EMBO Journal, 2013, 32, 3029-3040.	3.5	115
34	RNF111/Arkadia is a SUMO-targeted ubiquitin ligase that facilitates the DNA damage response. Journal of Cell Biology, 2013, 201, 797-807.	2.3	129
35	Diseaseâ€causing mutations in the <scp>XIAP</scp> <scp>BIR</scp> 2 domain impair <scp>NOD</scp> 2â€dependent immune signalling. EMBO Molecular Medicine, 2013, 5, 1278-1295.	3.3	137
36	The Deubiquitylating Enzyme USP44 Counteracts the DNA Double-strand Break Response Mediated by the RNF8 and RNF168 Ubiquitin Ligases. Journal of Biological Chemistry, 2013, 288, 16579-16587.	1.6	106

#	Article	IF	CITATIONS
37	A new non-catalytic role for ubiquitin ligase RNF8 in unfolding higher-order chromatin structure. EMBO Journal, 2012, 31, 2511-2527.	3.5	94
38	Histone Displacement during Nucleotide Excision Repair. International Journal of Molecular Sciences, 2012, 13, 13322-13337.	1.8	9
39	DNA damage–inducible SUMOylation of HERC2 promotes RNF8 binding via a novel SUMO-binding Zinc finger. Journal of Cell Biology, 2012, 197, 179-187.	2.3	109
40	Ubiquitin and the DNA damage response. Cell Cycle, 2012, 11, 3153-3153.	1.3	3
41	TRIP12 and UBR5 Suppress Spreading of Chromatin Ubiquitylation at Damaged Chromosomes. Cell, 2012, 150, 697-709.	13.5	282
42	RNF8 and RNF168 but not HERC2 are required for DNA damage-induced ubiquitylation in chicken DT40 cells. DNA Repair, 2012, 11, 892-905.	1.3	22
43	DVC1 (C1orf124) is a DNA damage–targeting p97 adaptor that promotes ubiquitin-dependent responses to replication blocks. Nature Structural and Molecular Biology, 2012, 19, 1084-1092.	3.6	153
44	Human RNF169 is a negative regulator of the ubiquitin-dependent response to DNA double-strand breaks. Journal of Cell Biology, 2012, 197, 189-199.	2.3	115
45	Systems-wide analysis of ubiquitylation dynamics reveals a key role for PAF15 ubiquitylation in DNA-damage bypass. Nature Cell Biology, 2012, 14, 1089-1098.	4.6	234
46	The Ubiquitin Ligase XIAP Recruits LUBAC for NOD2 Signaling in Inflammation and Innate Immunity. Molecular Cell, 2012, 46, 746-758.	4.5	336
47	53BP1 nuclear bodies form around DNA lesions generated by mitotic transmission of chromosomes under replication stress. Nature Cell Biology, 2011, 13, 243-253.	4.6	584
48	The ubiquitin―and SUMOâ€dependent signaling response to DNA doubleâ€strand breaks. FEBS Letters, 2011, 585, 2914-2919.	1.3	97
49	Mass Spectrometric Analysis of Lysine Ubiquitylation Reveals Promiscuity at Site Level. Molecular and Cellular Proteomics, 2011, 10, M110.003590.	2.5	275
50	Assembly and function of DNA double-strand break repair foci in mammalian cells. DNA Repair, 2010, 9, 1219-1228.	1.3	288
51	HERC2 coordinates ubiquitin-dependent assembly of DNA repair factors on damaged chromosomes. Nature Cell Biology, 2010, 12, 80-86.	4.6	239
52	Nucleotide excision repair–induced H2A ubiquitination is dependent on MDC1 and RNF8 and reveals a universal DNA damage response. Journal of Cell Biology, 2009, 186, 835-847.	2.3	167
53	USP7 counteracts SCFβTrCP- but not APCCdh1-mediated proteolysis of Claspin. Journal of Cell Biology, 2009, 184, 13-19.	2.3	109
54	Mislocalization of the MRN complex prevents ATR signaling during adenovirus infection. EMBO Journal, 2009, 28, 652-662.	3.5	87

#	Article	IF	CITATIONS
55	RNF168 Binds and Amplifies Ubiquitin Conjugates on Damaged Chromosomes to Allow Accumulation of Repair Proteins. Cell, 2009, 136, 435-446.	13.5	784
56	Phosphorylation of SDT repeats in the MDC1 N terminus triggers retention of NBS1 at the DNA damage–modified chromatin. Journal of Cell Biology, 2008, 181, 213-226.	2.3	197
57	1 Ubiquitylation of histones at sites of DNA damage. Apmis, 2008, 116, 418-419.	0.9	0
58	Human Xip1 (C2orf13) Is a Novel Regulator of Cellular Responses to DNA Strand Breaks. Journal of Biological Chemistry, 2007, 282, 19638-19643.	1.6	68
59	RNF8 Ubiquitylates Histones at DNA Double-Strand Breaks and Promotes Assembly of Repair Proteins. Cell, 2007, 131, 887-900.	13.5	1,029
60	Destruction of Claspin by SCF \hat{l}^2 TrCP Restrains Chk1 Activation and Facilitates Recovery from Genotoxic Stress. Molecular Cell, 2006, 23, 307-318.	4.5	231
61	Chromatin relaxation in response to DNA double-strand breaks is modulated by a novel ATM- and KAP-1 dependent pathway. Nature Cell Biology, 2006, 8, 870-876.	4.6	651
62	Spatial organization of the mammalian genome surveillance machinery in response to DNA strand breaks. Journal of Cell Biology, 2006, 173, 195-206.	2.3	564
63	Claspin Operates Downstream of TopBP1 To Direct ATR Signaling towards Chk1 Activation. Molecular and Cellular Biology, 2006, 26, 6056-6064.	1.1	155
64	Dynamic assembly and sustained retention of 53BP1 at the sites of DNA damage are controlled by Mdc1/NFBD1. Journal of Cell Biology, 2005, 170, 201-211.	2.3	250
65	Mdc1 couples DNA double-strand break recognition by Nbs1 with its H2AX-dependent chromatin retention. EMBO Journal, 2004, 23, 2674-2683.	3.5	356