Baozhong Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5893013/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nonionic nontoxic antimicrobial polymers: indole-grafted poly(vinyl alcohol) with pendant alkyl or ether groups. Polymer Chemistry, 2022, 13, 2307-2319.	3.9	5
2	Hyperbranched Polyesters Based on Indole- and Lignin-Derived Monomeric Aromatic Aldehydes as Effective Nonionic Antimicrobial Coatings with Excellent Biocompatibility. Biomacromolecules, 2022, 23, 150-162.	5.4	13
3	Biobased aliphatic polyesters from a spirocyclic dicarboxylate monomer derived from levulinic acid. Green Chemistry, 2021, 23, 5706-5723.	9.0	11
4	Synthesis, Enzymatic Degradation, and Polymer-Miscibility Evaluation of Nonionic Antimicrobial Hyperbranched Polyesters with Indole or Isatin Functionalities. Biomacromolecules, 2021, 22, 2256-2271.	5.4	8
5	Assessment of IsPETase-Assisted Depolymerization of Terephthalate Aromatic Polyesters and the Effect of the Thioredoxin Fusion Domain. Applied Sciences (Switzerland), 2021, 11, 8315.	2.5	6
6	Synthesis and melt-spinning of partly bio-based thermoplastic poly(cycloacetal-urethane)s toward sustainable textiles. Polymer Chemistry, 2021, 12, 4942-4953.	3.9	9
7	Sustainable aromatic polyesters with 1,5-disubstituted indole units. RSC Advances, 2021, 11, 16480-16489.	3.6	2
8	Development of Circularly Recyclable Low Melting Temperature Bicomponent Fibers toward a Sustainable Nonwoven Application. ACS Sustainable Chemistry and Engineering, 2021, 9, 16778-16785.	6.7	8
9	Synthesis of Biobased Block Copolymers Using A Novel Methacrylated Methyl Salicylate and Poly(3â€Hydroxybutyrate). ChemistrySelect, 2021, 6, 12255-12265.	1.5	6
10	Designing Biobased Recyclable Polymers for Plastics. Trends in Biotechnology, 2020, 38, 50-67.	9.3	185
11	5-Hydroxymethylfurfural from fructose: an efficient continuous process in a water-dimethyl carbonate biphasic system with high yield product recovery. Green Chemistry, 2020, 22, 5402-5413.	9.0	52
12	Synthesis, Molecular Docking Simulation, and Enzymatic Degradation of AB-Type Indole-Based Polyesters with Improved Thermal Properties. Biomacromolecules, 2020, 21, 1078-1090.	5.4	13
13	Synthesis, thermal, rheological characteristics, and enzymatic degradation of aliphatic polyesters with ligninâ€based aromatic pendant groups. Journal of Polymer Science Part A, 2019, 57, 2314-2323.	2.3	9
14	Synthesis, Life Cycle Assessment, and Polymerization of a Vanillin-Based Spirocyclic Diol toward Polyesters with Increased Glass-Transition Temperature. ACS Sustainable Chemistry and Engineering, 2019, 7, 19090-19103.	6.7	50
15	Synthesis, Thermal Properties, and Rheological Characteristics of Indole-Based Aromatic Polyesters. ACS Omega, 2019, 4, 15012-15021.	3.5	19
16	A rigid spirocyclic diol from fructose-based 5-hydroxymethylfurfural: synthesis, life-cycle assessment, and polymerization for renewable polyesters and poly(urethane-urea)s. Green Chemistry, 2019, 21, 6667-6684.	9.0	50
17	New biobased non-ionic hyperbranched polymers as environmentally friendly antibacterial additives for biopolymers. Green Chemistry, 2018, 20, 1238-1249.	9.0	26
18	Indole as a new sustainable aromatic unit for high quality biopolyesters. Polymer Chemistry, 2018, 9, 4706-4710	3.9	30

BAOZHONG ZHANG

#	Article	IF	CITATIONS
19	Cellulose-Organic <i>Montmorillonite</i> Nanocomposites as Biomacromolecular Quorum-Sensing Inhibitor. Biomacromolecules, 2017, 18, 3439-3446.	5.4	13
20	Facile synthesis of novel soluble cellulose-grafted hyperbranched polymers as potential natural antimicrobial materials. Carbohydrate Polymers, 2017, 157, 1913-1921.	10.2	46
21	Exploring the Loading Capacity of Generation Six to Eight Dendronized Polymers in Aqueous Solution. ChemPhysChem, 2016, 17, 2767-2772.	2.1	1
22	Solvatochromism of dye-labeled dendronized polymers of generation numbers 1–4: comparison to dendrimers. Chemical Science, 2016, 7, 4644-4652.	7.4	9
23	Modeling Nanosized Single Molecule Objects: Dendronized Polymers Adsorbed onto Mica. Journal of Physical Chemistry C, 2015, 119, 3746-3753.	3.1	11
24	Dendronized Polymers: Molecular Objects between Conventional Linear Polymers and Colloidal Particles. ACS Macro Letters, 2014, 3, 991-998.	4.8	62
25	Synthesis of High Generation Dendronized Polymers and Quantification of Their Structure Perfection. Macromolecules, 2014, 47, 4127-4135.	4.8	24
26	Computer simulation of dendronized polymers: organization and characterization at the atomistic level. RSC Advances, 2013, 3, 126-140.	3.6	26
27	Synthetic regimes due to packing constraints in dendritic molecules confirmed by labelling experiments. Nature Communications, 2013, 4, 1993.	12.8	21
28	Computer Simulation of Fifth Generation Dendronized Polymers: Impact of Charge on Internal Organization. Journal of Physical Chemistry B, 2013, 117, 6007-6017.	2.6	20
29	Solvent induced phenomena in a dendronized linear polymer. Colloid and Polymer Science, 2013, 291, 2879-2892.	2.1	17
30	The Viscosity Law of Dendronized Linear Polymers. Macromolecular Rapid Communications, 2013, 34, 1537-1541.	3.9	3
31	Load–Collapse–Release Cascades of Amphiphilic Guest Molecules in Charged Dendronized Polymers through Spatial Separation of Noncovalent Forces. Chemistry - A European Journal, 2013, 19, 5602-5608.	3.3	7
32	Main hain Scission of a Charged Fifthâ€Generation Dendronized Polymer. Helvetica Chimica Acta, 2012, 95, 2399-2410.	1.6	12
33	Synthesis of Dendronized Polymers by a "n+ 2―Approach. Macromolecules, 2012, 45, 8555-8560.	4.8	21
34	Loading and release capabilities of charged dendronized polymers revealed by EPR spectroscopy. Chemical Science, 2012, 3, 2550.	7.4	18
35	Height and Width of Adsorbed Dendronized Polymers: Electron and Atomic Force Microscopy of Homologous Series. Macromolecules, 2011, 44, 6785-6792.	4.8	46
36	Assessing the Solution Shape and Size of Charged Dendronized Polymers Using Double Electronâ^'Electron Resonance. Journal of Physical Chemistry Letters, 2011, 2, 1583-1587.	4.6	28

#	Article	IF	CITATIONS
37	The Largest Synthetic Structure with Molecular Precision: Towards a Molecular Object. Angewandte Chemie - International Edition, 2011, 50, 737-740.	13.8	111
38	Tuning Polymer Thickness: Synthesis and Scaling Theory of Homologous Series of Dendronized Polymers. Journal of the American Chemical Society, 2009, 131, 11841-11854.	13.7	130