
Glen P Carter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5892424/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Development of 1,2,4-Oxadiazole Antimicrobial Agents to Treat Enteric Pathogens within the Gastrointestinal Tract. ACS Omega, 2022, 7, 6737-6759.	1.6	3
2	Detection of Chimeric Cellular: HIV mRNAs Generated Through Aberrant Splicing in HIV-1 Latently Infected Resting CD4+ T Cells. Frontiers in Cellular and Infection Microbiology, 2022, 12, 855290.	1.8	3
3	Genomic Insights Into Last-Line Antimicrobial Resistance in Multidrug-Resistant Staphylococcus and Vancomycin-Resistant Enterococcus. Frontiers in Microbiology, 2021, 12, 637656.	1.5	21
4	Diarrhea in an infant due to Shigella flexneri 1 carrying multiple cephalosporinase-encoding genes. Gut Pathogens, 2021, 13, 18.	1.6	1
5	Clinical Relevance of Topical Antibiotic Use in Coselecting for Multidrug-Resistant Staphylococcus aureus: Insights from <i>In Vitro</i> and <i>Ex Vivo</i> Models. Antimicrobial Agents and Chemotherapy, 2021, 65, .	1.4	4
6	Daptomycin Resistance Occurs Predominantly in vanA-Type Vancomycin-Resistant Enterococcus faecium in Australasia and Is Associated With Heterogeneous and Novel Mutations. Frontiers in Microbiology, 2021, 12, 749935.	1.5	11
7	Structure–Activity Relationships of Daptomycin Lipopeptides. Journal of Medicinal Chemistry, 2020, 63, 13266-13290.	2.9	30
8	Microbe-Metabolite Associations Linked to the Rebounding Murine Gut Microbiome Postcolonization with Vancomycin-Resistant Enterococcus faecium. MSystems, 2020, 5, .	1.7	3
9	Gut microbiome of native Arab Kuwaitis. Gut Pathogens, 2020, 12, 10.	1.6	7
10	Complete microbial genomes for public health in Australia and the Southwest Pacific. Microbial Genomics, 2020, 6, .	1.0	10
11	Reconstruction of the Genomes of Drug-Resistant Pathogens for Outbreak Investigation through Metagenomic Sequencing. MSphere, 2019, 4, .	1.3	15
12	Non-typhoidal Salmonella blood stream infection in Kuwait: Clinical and microbiological characteristics. PLoS Neglected Tropical Diseases, 2019, 13, e0007293.	1.3	13
13	Remodeling of pSK1 Family Plasmids and Enhanced Chlorhexidine Tolerance in a Dominant Hospital Lineage of Methicillin-Resistant <i>Staphylococcus aureus</i> . Antimicrobial Agents and Chemotherapy, 2019, 63, .	1.4	18
14	Mining the Methylome Reveals Extensive Diversity in Staphylococcus epidermidis Restriction Modification. MBio, 2019, 10, .	1.8	28
15	Unstable chromosome rearrangements in <i>Staphylococcus aureus</i> cause phenotype switching associated with persistent infections. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 20135-20140.	3.3	69
16	Genomic Analysis of Fluoroquinolone- and Tetracycline-Resistant <i>Campylobacter jejuni</i> Sequence Type 6964 in Humans and Poultry, New Zealand, 2014–2016. Emerging Infectious Diseases, 2019, 25, 2226-2234.	2.0	27
17	Co-circulation of Multidrug-resistant Shigella Among Men Who Have Sex With Men in Australia. Clinical Infectious Diseases, 2019, 69, 1535-1544.	2.9	77
18	Genomics of vancomycin-resistant Enterococcus faecium. Microbial Genomics, 2019, 5, .	1.0	44

GLEN P CARTER

#	Article	IF	CITATIONS
19	1,2,4-Oxadiazole antimicrobials act synergistically with daptomycin and display rapid kill kinetics against MDR Enterococcus faecium. Journal of Antimicrobial Chemotherapy, 2018, 73, 1562-1569.	1.3	12
20	Complete Genome Sequence of a New Zealand Isolate of the Bovine Pathogen Streptococcus uberis. Genome Announcements, 2018, 6, .	0.8	3
21	Genome-by-genome approach for fast bacterial genealogical relationship evaluation. Bioinformatics, 2018, 34, 3025-3027.	1.8	25
22	Incorporating Whole-Genome Sequencing into Public Health Surveillance: Lessons from Prospective Sequencing of Salmonella Typhimurium in Australia. Foodborne Pathogens and Disease, 2018, 15, 161-167.	0.8	24
23	Genomic epidemiology and antimicrobial resistance of Neisseria gonorrhoeae in New Zealand. Journal of Antimicrobial Chemotherapy, 2018, 73, 353-364.	1.3	57
24	Topical Antibiotic Use Coselects for the Carriage of Mobile Genetic Elements Conferring Resistance to Unrelated Antimicrobials in Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 2018, 62,	1.4	28
25	Seven <i>Salmonella</i> Typhimurium Outbreaks in Australia Linked by Trace-Back and Whole Genome Sequencing. Foodborne Pathogens and Disease, 2018, 15, 285-292.	0.8	27
26	Genomic Analysis of Multiresistant Staphylococcus capitis Associated with Neonatal Sepsis. Antimicrobial Agents and Chemotherapy, 2018, 62, .	1.4	34
27	The changing landscape of vancomycin-resistant Enterococcus faecium in Australia: a population-level genomic study. Journal of Antimicrobial Chemotherapy, 2018, 73, 3268-3278.	1.3	27
28	Increasing tolerance of hospital <i>Enterococcus faecium</i> to handwash alcohols. Science Translational Medicine, 2018, 10, .	5.8	165
29	The First Isolation and Whole Genome Sequencing of Murray Valley Encephalitis Virus from Cerebrospinal Fluid of a Patient with Encephalitis. Viruses, 2018, 10, 319.	1.5	11
30	Translating genomics into practice for real-time surveillance and response to carbapenemase-producing Enterobacteriaceae: evidence from a complex multi-institutional KPC outbreak. PeerJ, 2018, 6, e4210.	0.9	66
31	Current and Emerging Topical Antibacterials and Antiseptics: Agents, Action, and Resistance Patterns. Clinical Microbiology Reviews, 2017, 30, 827-860.	5.7	245
32	Target-Specific Assay for Rapid and Quantitative Detection of Mycobacterium chimaera DNA. Journal of Clinical Microbiology, 2017, 55, 1847-1856.	1.8	17
33	A Supervised Statistical Learning Approach for Accurate Legionella pneumophila Source Attribution during Outbreaks. Applied and Environmental Microbiology, 2017, 83, .	1.4	8
34	Draft Genome Sequences of Two Strains of a Newly Described Species, Sphingobacterium cellulitidis. Genome Announcements, 2017, 5, .	0.8	1
35	A phylogenomic framework for assessing the global emergence and evolution of clonal complex 398 methicillin-resistant Staphylococcus aureus. Microbial Genomics, 2017, 3, e000105.	1.0	24
36	Emergence of endemic MLST non-typeable vancomycin-resistant <i>Enterococcus faecium</i> . Journal of Antimicrobial Chemotherapy, 2016, 71, 3367-3371.	1.3	44

GLEN P CARTER

#	Article	IF	CITATIONS
37	Rapid Emergence and Evolution of Staphylococcus aureus Clones Harboring <i>fusC</i> -Containing Staphylococcal Cassette Chromosome Elements. Antimicrobial Agents and Chemotherapy, 2016, 60, 2359-2365.	1.4	41
38	Genomic insights into a sustained national outbreak of <i>Yersinia pseudotuberculosis</i> . Genome Biology and Evolution, 2016, 8, evw285.	1.1	31
39	Defining the Roles of TcdA and TcdB in Localized Gastrointestinal Disease, Systemic Organ Damage, and the Host Response during Clostridium difficile Infections. MBio, 2015, 6, e00551.	1.8	228
40	Molecular characterization and antimicrobial susceptibilities of Clostridium difficile clinical isolates from Victoria, Australia. Anaerobe, 2015, 34, 80-83.	1.0	8
41	<i>Clostridium difficile</i> virulence factors: Insights into an anaerobic spore-forming pathogen. Gut Microbes, 2014, 5, 579-593.	4.3	110
42	Regulation of toxin production in the pathogenic clostridia. Molecular Microbiology, 2014, 91, 221-231.	1.2	25
43	Utility of the Clostridial Site-Specific Recombinase TnpX To Clone Toxic-Product-Encoding Genes and Selectively Remove Genomic DNA Fragments. Applied and Environmental Microbiology, 2014, 80, 3597-3603.	1.4	8
44	Emergence of a Ribotype 244 Strain of Clostridium difficile Associated With Severe Disease and Related to the Epidemic Ribotype 027 Strain. Clinical Infectious Diseases, 2014, 58, 1723-1730.	2.9	111
45	Expression of the large clostridial toxins is controlled by conserved regulatory mechanisms. International Journal of Medical Microbiology, 2014, 304, 1147-1159.	1.5	31
46	Novel Molecular Type ofClostridium difficilein Neonatal Pigs, Western Australia. Emerging Infectious Diseases, 2013, 19, 790-2.	2.0	39
47	Spo0A Differentially Regulates Toxin Production in Evolutionarily Diverse Strains of Clostridium difficile. PLoS ONE, 2013, 8, e79666.	1.1	79
48	The role of toxin A and toxin B in the virulence of Clostridium difficile. Trends in Microbiology, 2012, 20, 21-29.	3.5	138
49	Non-toxigenic Clostridium sordellii: Clinical and microbiological features of a case of cholangitis-associated bacteremia. Anaerobe, 2011, 17, 252-256.	1.0	16
50	TcdB or not TcdB: a tale of twoClostridium difficiletoxins. Future Microbiology, 2011, 6, 121-123.	1.0	15
51	TcsL Is an Essential Virulence Factor in Clostridium sordellii ATCC 9714. Infection and Immunity, 2011, 79, 1025-1032.	1.0	51
52	The Anti-Sigma Factor TcdC Modulates Hypervirulence in an Epidemic BI/NAP1/027 Clinical Isolate of Clostridium difficile. PLoS Pathogens, 2011, 7, e1002317.	2.1	139
53	The Cysteine Protease α-Clostripain is Not Essential for the Pathogenesis of Clostridium perfringens-Mediated Myonecrosis. PLoS ONE, 2011, 6, e22762.	1.1	15
54	The role of toxin A and toxin B in Clostridium difficile-associated disease. Gut Microbes, 2010, 1, 58-64.	4.3	90

GLEN P CARTER

#	Article	IF	CITATIONS
55	The VirSR Two-Component Signal Transduction System Regulates NetB Toxin Production in Clostridium perfringens. Infection and Immunity, 2010, 78, 3064-3072.	1.0	82
56	Methods for Gene Cloning and Targeted Mutagenesis. Methods in Molecular Biology, 2010, 646, 183-201.	0.4	1
57	Toxin B is essential for virulence of Clostridium difficile. Nature, 2009, 458, 1176-1179.	13.7	654
58	Binary Toxin Production in <i>Clostridium difficile</i> Is Regulated by CdtR, a LytTR Family Response Regulator. Journal of Bacteriology, 2007, 189, 7290-7301.	1.0	116
59	The ClosTron: A universal gene knock-out system for the genus Clostridium. Journal of Microbiological Methods, 2007, 70, 452-464.	0.7	598
60	Quorum sensing in Clostridium difficile: analysis of a luxS-type signalling system. Journal of Medical Microbiology, 2005, 54, 119-127.	0.7	68
61	Gene Cloning in Clostridia. , 2005, , 37-52.		5
62	The development of Clostridium difficile genetic systems. Anaerobe, 2004, 10, 75-84.	1.0	14
63	Regulation of Toxin Production in Clostridium difficile. , 0, , 295-306.		0