Uri Lesmes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5892072/publications.pdf

Version: 2024-02-01

59	8,787	35	56
papers	citations	h-index	g-index
60	60	60	7277
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Impact of silkworm pupae (Bombyx mori) powder on cream foaming, ice cream properties and palatability. Innovative Food Science and Emerging Technologies, 2022, 75, 102874.	2.7	17
2	Bovine alpha-lactalbumin particulates for controlled delivery: Impact of dietary fibers on stability, digestibility, and gastro-intestinal release of capsaicin. Food Hydrocolloids, 2022, 128, 107536.	5.6	4
3	Big opportunities for tiny bugs: Processing effects on the techno-functionality and digestibility of edible insects. Trends in Food Science and Technology, 2022, 122, 265-274.	7.8	24
4	An in vitro digestion model accounting for sex differences in gastro-intestinal functions and its application to study differential protein digestibility. Food Hydrocolloids, 2022, 132, 107850.	5.6	13
5	The impact of chemical structure on polyphenol bioaccessibility, as a function of processing, cell wall material and pH: A model system. Journal of Food Engineering, 2021, 289, 110304.	2.7	19
6	Lipid Digestion: In Vitro and In Vivo Models and Insights. , 2021, , 47-64.		1
7	Mechanisms of absorption of vitamin D ₃ delivered in protein nanoparticles in the absence and presence of fat. Food and Function, 2021, 12, 4935-4946.	2.1	6
8	Bovine alpha-lactalbumin assemblies with capsaicin: Formation, interactions, loading and physiochemical characterization. Food Chemistry, 2021, 352, 129306.	4.2	14
9	Capsaicin stability and bio-accessibility affected by complexation with high-amylose corn starch (HACS). Food and Function, 2021, 12, 6992-7000.	2.1	7
10	The impact of food-grade carrageenans and consumer age on the in vitro proteolysis of whey proteins. Food Research International, 2020, 130, 108964.	2.9	18
11	Controlling lipid intestinal digestibility using various oil structuring mechanisms. Food and Function, 2020, 11, 7495-7508.	2.1	12
12	Addition of Anionic Polysaccharide Stabilizers Modulates In Vitro Digestive Proteolysis of a Chocolate Milk Drink in Adults and Children. Foods, 2020, 9, 1253.	1.9	11
13	Impact of pilot-scale processing (thermal, PEF, HPP) on the stability and bioaccessibility of polyphenols and proteins in mixed protein- and polyphenol-rich juice systems. Innovative Food Science and Emerging Technologies, 2020, 64, 102426.	2.7	31
14	Impact of different oil gelators and oleogelation mechanisms on digestive lipolysis of canola oil oleogels. Food Hydrocolloids, 2019, 97, 105218.	5.6	73
15	Digestibility, antioxidative activity and stability of plant protein-rich products after processing and formulation with polyphenol-rich juices: kale and kale–strawberry as a model. European Food Research and Technology, 2019, 245, 2499-2514.	1.6	11
16	Impact of thermal processing on physicochemical properties of silk moth pupae (Bombyx mori) flour and in-vitro gastrointestinal proteolysis in adults and seniors. Food Research International, 2019, 123, 11-19.	2.9	15
17	INFOGEST static in vitro simulation of gastrointestinal food digestion. Nature Protocols, 2019, 14, 991-1014.	5.5	1,873
18	Reply to the Comment on "Revisiting the carrageenan controversy: do we really understand the digestive fate and safety of carrageenan in our foods?―by M. Weiner and J. McKim, <i>Food Funct.</i> , 2019, 10 : DOI: 10.1039/C8FO01282B. Food and Function, 2019, 10, 1763-1766.	2.1	6

#	Article	IF	Citations
19	Quantifying Digestion Products: Physicochemical Aspects. , 2019, , 231-253.		1
20	Impact of fatty acids unsaturation on stability and intestinal lipolysis of bioactive lipid droplets. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 561, 70-78.	2.3	15
21	Revisiting the carrageenan controversy: do we really understand the digestive fate and safety of carrageenan in our foods?. Food and Function, 2018, 9, 1344-1352.	2.1	83
22	Effects of thermal treatments on the colloidal properties, antioxidant capacity and in-vitro proteolytic degradation of cricket flour. Food Hydrocolloids, 2018, 79, 48-54.	5.6	45
23	Emulsion and protein degradation in the elderly: Qualitative insights from a study coupling a dynamic inÂvitro digestion model with proteomic analyses. Food Hydrocolloids, 2017, 69, 393-401.	5.6	31
24	Re-assembled casein micelles improve in vitro bioavailability of vitamin D in a Caco-2 cell model. Food and Function, 2017, 8, 2133-2141.	2.1	50
25	Implications of the Maillard reaction on bovine alpha-lactalbumin and its proteolysis during in vitro infant digestion. Food and Function, 2017, 8, 2295-2308.	2.1	36
26	Extending inÂvitro digestion models to specific human populations: Perspectives, practical tools and bio-relevant information. Trends in Food Science and Technology, 2017, 60, 52-63.	7.8	134
27	Digestive fate of dietary carrageenan: Evidence of interference with digestive proteolysis and disruption of gut epithelial function. Molecular Nutrition and Food Research, 2017, 61, 1600545.	1.5	54
28	The harmonized INFOGEST in vitro digestion method: From knowledge to action. Food Research International, 2016, 88, 217-225.	2.9	180
29	Antioxidant activity of bovine alpha lactalbumin Maillard products and evaluation of their in vitro gastro-duodenal digestive proteolysis. Food and Function, 2015, 6, 1229-1240.	2.1	43
30	Characterization of oil-in-water emulsions stabilized by tyrosinase-crosslinked soy glycinin. Food Hydrocolloids, 2015, 43, 493-500.	5.6	26
31	A standardised static <i>in vitro</i> digestion method suitable for food – an international consensus. Food and Function, 2014, 5, 1113-1124.	2.1	3,730
32	Bi-compartmental elderly or adult dynamic digestion models applied to interrogate protein digestibility. Food and Function, 2014, 5, 2402-2409.	2.1	61
33	Responsiveness of emulsions stabilized by lactoferrin nano-particles to simulated intestinal conditions. Food and Function, 2014, 5, 65-73.	2.1	66
34	The impact of the Maillard reaction on the in vitro proteolytic breakdown of bovine lactoferrin in adults and infants. Food and Function, 2014, 5, 1898-1908.	2.1	51
35	Behavior of Emulsions Stabilized by a Hydrophobically Modified Inulin Under Bio-Relevant Conditions of the Human Gastro-Intestine. Food Biophysics, 2014, 9, 416-423.	1.4	11
36	Characterization of Pickering O/W Emulsions Stabilized by Silica Nanoparticles and Their Responsiveness to In vitro Digestion Conditions. Food Biophysics, 2014, 9, 406-415.	1.4	58

#	Article	lF	CITATIONS
37	Milk protein–vitamin interactions: Formation of beta-lactoglobulin/folic acid nano-complexes and their impactÂonÂinÂvitro gastro-duodenal proteolysis. Food Hydrocolloids, 2014, 38, 40-47.	5.6	55
38	Impact of the Maillard reaction on the antioxidant capacity of bovine lactoferrin. Food Chemistry, 2013, 141, 3796-3802.	4.2	40
39	Emulsions stabilization by lactoferrin nano-particles under inÂvitro digestion conditions. Food Hydrocolloids, 2013, 33, 264-272.	5.6	114
40	Comparative performance of milk proteins and their emulsions under dynamic inÂvitro adult and infant gastric digestion. Food Hydrocolloids, 2013, 32, 349-357.	5.6	65
41	Impact of dietary fibers on the properties and proteolytic digestibility of lactoferrin nano-particles. Food Hydrocolloids, 2013, 31, 33-41.	5.6	67
42	Impact of dietary fiber coatings on behavior of protein-stabilized lipid droplets under simulated gastrointestinal conditions. Food and Function, 2012, 3, 58-66.	2.1	53
43	Development of oral food-grade delivery systems: Current knowledge and future challenges. Food and Function, 2012, 3, 10-21.	2.1	100
44	Controlling lipid digestibility: Response of lipid droplets coated by \hat{l}^2 -lactoglobulin-dextran Maillard conjugates to simulated gastrointestinal conditions. Food Hydrocolloids, 2012, 26, 221-230.	5.6	110
45	Prebiotics: Modulators of the Human Gut Microflora. , 2012, , 265-279.		0
46	Modulation of physicochemical properties of lipid droplets using \hat{l}^2 -lactoglobulin and/or lactoferrin interfacial coatings. Food Hydrocolloids, 2011, 25, 1181-1189.	5.6	61
47	Wolfram Demonstrations: Free Interactive Software for Food Engineering Education and Practice. Food Engineering Reviews, 2010, 2, 157-167.	3.1	8
48	Structural characterization of amylose-long chain fatty acid complexes produced via the acidification method. Food Hydrocolloids, 2010, 24, 347-357.	5.6	105
49	Effect of polysaccharide charge on formation and properties of biopolymer nanoparticles created by heat treatment of β-lactoglobulin–pectin complexes. Food Hydrocolloids, 2010, 24, 374-383.	5.6	189
50	Fabrication and characterization of filled hydrogel particles based on sequential segregative and aggregative biopolymer phase separation. Food Hydrocolloids, 2010, 24, 689-701.	5.6	72
51	Impact of surface deposition of lactoferrin on physical and chemical stability of omega-3 rich lipid droplets stabilised by caseinate. Food Chemistry, 2010, 123, 99-106.	4.2	57
52	Fabrication and Morphological Characterization of Biopolymer Particles Formed by Electrostatic Complexation of Heat Treated Lactoferrin and Anionic Polysaccharides. Langmuir, 2010, 26, 9827-9834.	1.6	105
53	Impact of Electrostatic Deposition of Anionic Polysaccharides on the Stability of Oil Droplets Coated by Lactoferrin. Journal of Agricultural and Food Chemistry, 2010, 58, 9825-9832.	2.4	68
54	Impact of Interfacial Composition on Physical Stability and In Vitro Lipase Digestibility of Triacylglycerol Oil Droplets Coated with Lactoferrin and/or Caseinate. Journal of Agricultural and Food Chemistry, 2010, 58, 7962-7969.	2.4	55

Uri Lesmes

#	Article	IF	CITATION
55	Effects of long chain fatty acid unsaturation on the structure and controlled release properties of amylose complexes. Food Hydrocolloids, 2009, 23, 667-675.	5.6	163
56	Studying different dimensions of amylose–long chain fatty acid complexes: Molecular, nano and micro level characteristics. Food Hydrocolloids, 2009, 23, 1918-1925.	5.6	150
57	Structure–function relationships to guide rational design and fabrication of particulate food delivery systems. Trends in Food Science and Technology, 2009, 20, 448-457.	7.8	143
58	Effects of Resistant Starch Type III Polymorphs on Human Colon Microbiota and Short Chain Fatty Acids in Human Gut Models. Journal of Agricultural and Food Chemistry, 2008, 56, 5415-5421.	2.4	109
59	Continuous dual feed homogenization for the production of starch inclusion complexes for controlled release of nutrients. Innovative Food Science and Emerging Technologies, 2008, 9, 507-515.	2.7	68